These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 28412812)

  • 1. An IonStar Experimental Strategy for MS1 Ion Current-Based Quantification Using Ultrahigh-Field Orbitrap: Reproducible, In-Depth, and Accurate Protein Measurement in Large Cohorts.
    Shen X; Shen S; Li J; Hu Q; Nie L; Tu C; Wang X; Orsburn B; Wang J; Qu J
    J Proteome Res; 2017 Jul; 16(7):2445-2456. PubMed ID: 28412812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-High-Resolution IonStar Strategy Enhancing Accuracy and Precision of MS1-Based Proteomics and an Extensive Comparison with State-of-the-Art SWATH-MS in Large-Cohort Quantification.
    Wang X; Jin L; Hu C; Shen S; Qian S; Ma M; Zhu X; Li F; Wang J; Tian Y; Qu J
    Anal Chem; 2021 Mar; 93(11):4884-4893. PubMed ID: 33687211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IonStar enables high-precision, low-missing-data proteomics quantification in large biological cohorts.
    Shen X; Shen S; Li J; Hu Q; Nie L; Tu C; Wang X; Poulsen DJ; Orsburn BC; Wang J; Qu J
    Proc Natl Acad Sci U S A; 2018 May; 115(21):E4767-E4776. PubMed ID: 29743190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-quality and robust protein quantification in large clinical/pharmaceutical cohorts with IonStar proteomics investigation.
    Shen S; Wang X; Zhu X; Rasam S; Ma M; Huo S; Qian S; Zhang M; Qu M; Hu C; Jin L; Tian Y; Sethi S; Poulsen D; Wang J; Tu C; Qu J
    Nat Protoc; 2023 Mar; 18(3):700-731. PubMed ID: 36494494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant Cocktail-Aided Extraction/Precipitation/On-Pellet Digestion Strategy Enables Efficient and Reproducible Sample Preparation for Large-Scale Quantitative Proteomics.
    Shen S; An B; Wang X; Hilchey SP; Li J; Cao J; Tian Y; Hu C; Jin L; Ng A; Tu C; Qu M; Zand MS; Qu J
    Anal Chem; 2018 Sep; 90(17):10350-10359. PubMed ID: 30078316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MS1 ion current-based quantitative proteomics: A promising solution for reliable analysis of large biological cohorts.
    Wang X; Shen S; Rasam SS; Qu J
    Mass Spectrom Rev; 2019 Nov; 38(6):461-482. PubMed ID: 30920002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A straightforward and highly efficient precipitation/on-pellet digestion procedure coupled with a long gradient nano-LC separation and Orbitrap mass spectrometry for label-free expression profiling of the swine heart mitochondrial proteome.
    Duan X; Young R; Straubinger RM; Page B; Cao J; Wang H; Yu H; Canty JM; Qu J
    J Proteome Res; 2009 Jun; 8(6):2838-50. PubMed ID: 19290621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of Search Engines and Postprocessing Approaches to Maximize Peptide and Protein Identification for High-Resolution Mass Data.
    Tu C; Sheng Q; Li J; Ma D; Shen X; Wang X; Shyr Y; Yi Z; Qu J
    J Proteome Res; 2015 Nov; 14(11):4662-73. PubMed ID: 26390080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A peptide-retrieval strategy enables significant improvement of quantitative performance without compromising confidence of identification.
    Tu C; Shen S; Sheng Q; Shyr Y; Qu J
    J Proteomics; 2017 Jan; 152():276-282. PubMed ID: 27903464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic optimization of Liquid Chromatography and Mass Spectrometry parameters on Orbitrap Tribrid mass spectrometer for high efficient data-dependent proteomics.
    Huang P; Liu C; Gao W; Chu B; Cai Z; Tian R
    J Mass Spectrom; 2021 Apr; 56(4):e4653. PubMed ID: 32924238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Reproducible Quantitative Proteomics Analysis of Pancreatic Cancer Cells Reveals Proteome-Level Effects of a Novel Combination Drug Therapy That Induces Cancer Cell Death via Metabolic Remodeling and Activation of the Extrinsic Apoptosis Pathway.
    Rasam S; Lin Q; Shen S; Straubinger RM; Qu J
    J Proteome Res; 2023 Dec; 22(12):3780-3792. PubMed ID: 37906173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Insights into the Disease Progression Control Mechanisms by Comparing Long-Term-Nonprogressors versus Normal-Progressors among HIV-1-Positive Patients Using an Ion Current-Based MS1 Proteomic Profiling.
    Shen X; Nair B; Mahajan SD; Jiang X; Li J; Shen S; Tu C; Hsiao CB; Schwartz SA; Qu J
    J Proteome Res; 2015 Dec; 14(12):5225-39. PubMed ID: 26484939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel, High-Quality Proteomic and Targeted Metabolomic Quantification Using Laser Capture Microdissected Tissues.
    Shen S; Li J; Huo S; Ma M; Zhu X; Rasam S; Duan X; Qu M; Titus MA; Qu J
    Anal Chem; 2021 Jun; 93(25):8711-8718. PubMed ID: 34110778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis.
    Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R
    J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Null Method to Guide the Development of Technical Procedures and to Control False-Positive Discovery in Quantitative Proteomics.
    Shen X; Hu Q; Li J; Wang J; Qu J
    J Proteome Res; 2015 Oct; 14(10):4147-57. PubMed ID: 26051676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted Feature Detection for Data-Dependent Shotgun Proteomics.
    Weisser H; Choudhary JS
    J Proteome Res; 2017 Aug; 16(8):2964-2974. PubMed ID: 28673088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of Experimental Parameters in Data-Independent Mass Spectrometry Significantly Increases Depth and Reproducibility of Results.
    Bruderer R; Bernhardt OM; Gandhi T; Xuan Y; Sondermann J; Schmidt M; Gomez-Varela D; Reiter L
    Mol Cell Proteomics; 2017 Dec; 16(12):2296-2309. PubMed ID: 29070702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rapid and sensitive single-cell proteomic method based on fast liquid-chromatography separation, retention time prediction and MS1-only acquisition.
    Fang W; Du Z; Kong L; Fu B; Wang G; Zhang Y; Qin W
    Anal Chim Acta; 2023 Apr; 1251():341038. PubMed ID: 36925302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MaxQuant Software for Ion Mobility Enhanced Shotgun Proteomics.
    Prianichnikov N; Koch H; Koch S; Lubeck M; Heilig R; Brehmer S; Fischer R; Cox J
    Mol Cell Proteomics; 2020 Jun; 19(6):1058-1069. PubMed ID: 32156793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ion-current-based, comprehensive and reproducible proteomic strategy for comparative characterization of the cellular responses to novel anti-cancer agents in a prostate cell model.
    Tu C; Li J; Bu Y; Hangauer D; Qu J
    J Proteomics; 2012 Dec; 77():187-201. PubMed ID: 22982362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.