These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28412817)

  • 1. Impact of Microcystis aeruginosa Exudate on the Formation and Reactivity of Iron Oxide Particles Following Fe(II) and Fe(III) Addition.
    Garg S; Wang K; Waite TD
    Environ Sci Technol; 2017 May; 51(10):5500-5510. PubMed ID: 28412817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox Transformations of Iron in the Presence of Exudate from the Cyanobacterium Microcystis aeruginosa under Conditions Typical of Natural Waters.
    Wang K; Garg S; Waite TD
    Environ Sci Technol; 2017 Mar; 51(6):3287-3297. PubMed ID: 28233985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation, reactivity and aging of amorphous ferric oxides in the presence of model and membrane bioreactor derived organics.
    Bligh MW; Maheshwari P; David Waite T
    Water Res; 2017 Nov; 124():341-352. PubMed ID: 28780358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-Mediated Reactive Oxygen Species Generation and Iron Redox Transformations in the Presence of Exudate from the Cyanobacterium Microcystis aeruginosa.
    Wang K; Garg S; Waite TD
    Environ Sci Technol; 2017 Aug; 51(15):8384-8395. PubMed ID: 28650640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of moderate pre-oxidation on the removal of Microcystis aeruginosa by KMnO4-Fe(II) process: significance of the in-situ formed Fe(III).
    Ma M; Liu R; Liu H; Qu J
    Water Res; 2012 Jan; 46(1):73-81. PubMed ID: 22078228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Fe(II) and Fe(III) transformation kinetics on iron acquisition by a toxic strain of Microcystis aeruginosa.
    Fujii M; Rose AL; Omura T; Waite TD
    Environ Sci Technol; 2010 Mar; 44(6):1980-6. PubMed ID: 20175526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fe(II)-regulated moderate pre-oxidation of Microcystis aeruginosa and formation of size-controlled algae flocs for efficient flotation of algae cell and organic matter.
    Qi J; Lan H; Liu R; Liu H; Qu J
    Water Res; 2018 Jun; 137():57-63. PubMed ID: 29533811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mn(VII)-Fe(II) pre-treatment for Microcystis aeruginosa removal by Al coagulation: simultaneous enhanced cyanobacterium removal and residual coagulant control.
    Ma M; Liu R; Liu H; Qu J
    Water Res; 2014 Nov; 65():73-84. PubMed ID: 25090625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of cyanobacteria and control of algal organic matter by simultaneous oxidation and coagulation - comparing the H
    Zhang X; Ma Y; Tang T; Xiong Y; Dai R
    Sci Total Environ; 2020 Jun; 720():137653. PubMed ID: 32325594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron oxide surface-catalyzed oxidation of ferrous iron by monochloramine: implications of oxide type and carbonate on reactivity.
    Vikesland PJ; Valentine RL
    Environ Sci Technol; 2002 Feb; 36(3):512-9. PubMed ID: 11871569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depassivation of aged Fe0 by ferrous ions: implications to contaminant degradation.
    Liu T; Li X; Waite TD
    Environ Sci Technol; 2013 Dec; 47(23):13712-20. PubMed ID: 24195471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of the freshwater cyanobacterium Microcystis aeruginosa grown in iron-limited continuous culture.
    Dang TC; Fujii M; Rose AL; Bligh M; Waite TD
    Appl Environ Microbiol; 2012 Mar; 78(5):1574-83. PubMed ID: 22210212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide.
    Xue X; Hanna K; Deng N
    J Hazard Mater; 2009 Jul; 166(1):407-14. PubMed ID: 19167810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking Isotope Exchange with Fe(II)-Catalyzed Dissolution of Iron(hydr)oxides in the Presence of the Bacterial Siderophore Desferrioxamine-B.
    Biswakarma J; Kang K; Schenkeveld WDC; Kraemer SM; Hering JG; Hug SJ
    Environ Sci Technol; 2020 Jan; 54(2):768-777. PubMed ID: 31846315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of light on iron uptake by the freshwater cyanobacterium Microcystis aeruginosa.
    Fujii M; Dang TC; Rose AL; Omura T; Waite TD
    Environ Sci Technol; 2011 Feb; 45(4):1391-8. PubMed ID: 21265504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controls on Fe(II)-activated trace element release from goethite and hematite.
    Frierdich AJ; Catalano JG
    Environ Sci Technol; 2012 Feb; 46(3):1519-26. PubMed ID: 22185654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of natural organic matter on iron uptake by the freshwater cyanobacterium Microcystis aeruginosa.
    Fujii M; Dang TC; Bligh MW; Rose AL; Waite TD
    Environ Sci Technol; 2014; 48(1):365-74. PubMed ID: 24261844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amorphous iron-(hydr) oxide networks at liquid/vapor interfaces: in situ X-ray scattering and spectroscopy studies.
    Wang W; Pleasants J; Bu W; Park RY; Kuzmenko I; Vaknin D
    J Colloid Interface Sci; 2012 Oct; 384(1):45-54. PubMed ID: 22818795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of pH on the Kinetics and Mechanism of Photoreductive Dissolution of Amorphous Iron Oxyhydroxide in the Presence of Natural Organic Matter: Implications to Iron Bioavailability in Surface Waters.
    Garg S; Xing G; Waite TD
    Environ Sci Technol; 2020 Jun; 54(11):6771-6780. PubMed ID: 32379429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.