These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 28413075)

  • 1. Abrasion and blunt tissue trauma study of a novel flexible robotic system in the porcine model.
    Lerner MZ; Tricoli M; Strome M
    Am J Otolaryngol; 2017; 38(4):447-451. PubMed ID: 28413075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A european multicenter study evaluating the flex robotic system in transoral robotic surgery.
    Lang S; Mattheis S; Hasskamp P; Lawson G; Güldner C; Mandapathil M; Schuler P; Hoffmann T; Scheithauer M; Remacle M
    Laryngoscope; 2017 Feb; 127(2):391-395. PubMed ID: 27783427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flex Robotic System in transoral robotic surgery: The first 40 patients.
    Mattheis S; Hasskamp P; Holtmann L; Schäfer C; Geisthoff U; Dominas N; Lang S
    Head Neck; 2017 Mar; 39(3):471-475. PubMed ID: 27792258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A new flexible endoscopy-system for the transoral resection of head and neck tumors].
    Mattheis S; Lang S
    Laryngorhinootologie; 2015 Jan; 94(1):25-8. PubMed ID: 25054545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A flexible, single-arm robotic surgical system for transoral resection of the tonsil and lateral pharyngeal wall: Next-generation robotic head and neck surgery.
    Holsinger FC
    Laryngoscope; 2016 Apr; 126(4):864-9. PubMed ID: 26509920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curved Laryngopharyngoscope With Flexible Next-Generation Robotic Surgical System for Transoral Hypopharyngeal Surgery: A Preclinical Evaluation.
    Eguchi K; Chan JYK; Tateya I; Shimizu A; Holsinger FC; Sugimoto T
    Ann Otol Rhinol Laryngol; 2019 Nov; 128(11):1023-1029. PubMed ID: 31220916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Compliant Transoral Surgical Robotic System Based on a Parallel Flexible Mechanism.
    Gu X; Li C; Xiao X; Lim CM; Ren H
    Ann Biomed Eng; 2019 Jun; 47(6):1329-1344. PubMed ID: 30863909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Difficult intubation resulting in surgical repair of esophageal and hypopharyngeal perforation.
    Wastler KE
    AANA J; 2015 Feb; 83(1):21-7. PubMed ID: 25842630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary study of transoral robotic surgery for pharyngeal cancer in Japan.
    Fujiwara K; Fukuhara T; Kitano H; Fujii T; Koyama S; Yamasaki A; Kataoka H; Takeuchi H
    J Robot Surg; 2016 Mar; 10(1):11-7. PubMed ID: 26645072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of robot-assisted neck dissection followed by transoral robotic surgery.
    Byeon HK; Holsinger FC; Kim DH; Kim JW; Park JH; Koh YW; Choi EC
    Br J Oral Maxillofac Surg; 2015 Jan; 53(1):68-73. PubMed ID: 25453254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can a flexible surgical robot be used in the pediatric population: A feasibility study.
    Goyal N; Goldenberg D; Ruszkay N; Tucker J; May J; Wilson MN
    Int J Pediatr Otorhinolaryngol; 2022 Aug; 159():111206. PubMed ID: 35759915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surgical anatomy of oropharynx and supraglottic larynx for transoral robotic surgery.
    Gun R; Ozer E
    J Surg Oncol; 2015 Dec; 112(7):690-6. PubMed ID: 26541478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Advances in transoral robotic surgery].
    Mattheis S; Kansy B; Haßkamp P; Holtmann L; Lang S
    HNO; 2015 Nov; 63(11):752-7. PubMed ID: 26449670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Flex Robotic System in Head and Neck Surgery: A Review.
    Riva G; Cravero E; Briguglio M; Capaccio P; Pecorari G
    Cancers (Basel); 2022 Nov; 14(22):. PubMed ID: 36428635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utility of the Highly Articulated Flex Robotic System for Head and Neck Procedures: A Cadaveric Study.
    Newsome H; Mandapathil M; Koh YW; Duvvuri U
    Ann Otol Rhinol Laryngol; 2016 Sep; 125(9):758-63. PubMed ID: 27287677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional outcomes, feasibility, and safety of resection of transoral robotic surgery: single-institution series of 35 consecutive cases of transoral robotic surgery for oropharyngeal squamous cell carcinoma.
    Lörincz BB; Möckelmann N; Busch CJ; Knecht R
    Head Neck; 2015 Nov; 37(11):1618-24. PubMed ID: 24955923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preclinical experience with a novel single-port platform for transoral surgery.
    Funk EK; Weissbrod P; Horgan S; Orosco RK; Califano JA
    Surg Endosc; 2021 Aug; 35(8):4857-4864. PubMed ID: 33712940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transoral endoscopic nasopharyngectomy with a flexible next-generation robotic surgical system.
    Tsang RK; Holsinger FC
    Laryngoscope; 2016 Oct; 126(10):2257-62. PubMed ID: 27312523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transoral robotic surgery (TORS) for benign pharyngeal lesions.
    Chan JY; Richmon JD
    Otolaryngol Clin North Am; 2014 Jun; 47(3):407-13. PubMed ID: 24882798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anesthesia and ventilation options for flex robotic assisted laryngopharyngeal surgery.
    Krespi Y; Kizhner V; Koorn R; Giordano A
    Am J Otolaryngol; 2019; 40(6):102185. PubMed ID: 31376924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.