These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28413241)

  • 1. Development of Portable Aerosol Mobility Spectrometer for Personal and Mobile Aerosol Measurement.
    Kulkarni P; Qi C; Fukushima N
    Aerosol Sci Technol; 2016; 50(11):1167-1179. PubMed ID: 28413241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miniature Dual-Corona Ionizer for Bipolar Charging of Aerosol.
    Qi C; Kulkarni P
    Aerosol Sci Technol; 2013 Jan; 47(1):81-92. PubMed ID: 26512158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniature Differential Mobility Analyzer for Compact Field-Portable Spectrometers.
    Qi C; Kulkarni P
    Aerosol Sci Technol; 2016; 50(11):1145-1154. PubMed ID: 27840546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance Comparison of Field Portable Instruments to the Scanning Mobility Particle Sizer Using Monodispersed and Polydispersed Sodium Chloride Aerosols.
    Vo E; Horvatin M; Zhuang Z
    Ann Work Expo Health; 2018 Jul; 62(6):711-720. PubMed ID: 29788040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metrological assessment of a portable analyzer for monitoring the particle size distribution of ultrafine particles.
    Stabile L; Cauda E; Marini S; Buonanno G
    Ann Occup Hyg; 2014 Aug; 58(7):860-76. PubMed ID: 24817159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between two different nanoparticle size spectrometers.
    Belosi F; Ferrari S; Poluzzi V; Santachiara G; Prodi F
    J Air Waste Manag Assoc; 2013 Aug; 63(8):918-25. PubMed ID: 24010372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles.
    Zhang C; Wang D; Zhu R; Yang W; Jiang P
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28441740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of 100 nm and 60 nm Particle Standards by Differential Mobility Analysis.
    Mulholland GW; Donnelly MK; Hagwood CR; Kukuck SR; Hackley VA; Pui DY
    J Res Natl Inst Stand Technol; 2006; 111(4):257-312. PubMed ID: 27274934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design Optimization of a Portable Thermophoretic Precipitator Nanoparticle Sampler.
    Miller A; Marinos A; Wendel C; King G; Bugarski A
    Aerosol Sci Technol; 2012; 46(8):897-904. PubMed ID: 26702194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and characterization of an aerosol time-of-flight mass spectrometer with increased detection efficiency.
    Su Y; Sipin MF; Furutani H; Prather KA
    Anal Chem; 2004 Feb; 76(3):712-9. PubMed ID: 14750867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance Assessment of Portable Optical Particle Spectrometer (POPS).
    Mei F; McMeeking G; Pekour M; Gao RS; Kulkarni G; China S; Telg H; Dexheimer D; Tomlinson J; Schmid B
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous-flow differential mobility analysis of nanoparticles and biomolecules.
    Flagan RC
    Annu Rev Chem Biomol Eng; 2014; 5():255-79. PubMed ID: 24655136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the filtration performance of NIOSH-approved N95 filtering facepiece respirators by photometric and number-based test methods.
    Rengasamy S; Miller A; Eimer BC
    J Occup Environ Hyg; 2011 Jan; 8(1):23-30. PubMed ID: 21154105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of the Electrostatic Classification Method to Size 0.1 μm SRM Particles-A Feasibility Study.
    Kinney PD; Pui DY; Mulliolland GW; Bryner NP
    J Res Natl Inst Stand Technol; 1991; 96(2):147-176. PubMed ID: 28184107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental determination of the steady-state charging probabilities and particle size conservation in non-radioactive and radioactive bipolar aerosol chargers in the size range of 5-40 nm.
    Kallinger P; Szymanski WW
    J Nanopart Res; 2015; 17(4):171. PubMed ID: 25866470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical Limitations of Aerosol Separation by a Tandem Differential Mobility Analyzer-Aerosol Particle Mass Analyzer.
    Radney JG; Zangmeister CD
    Aerosol Sci Technol; 2016; 50(2):160-172. PubMed ID: 28663667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sampling nanoparticles for chemical analysis by low resolution electrical mobility classification.
    McMurry PH; Ghimire A; Ahn HK; Sakurai H; Moore K; Stolzenburg M; Smith JN
    Environ Sci Technol; 2009 Jul; 43(13):4653-8. PubMed ID: 19673247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Portable Aerosol Collector and Spectrometer (PACS).
    Cai C; Thomas GW; Yang T; Park JH; Gogineni SP; Peters TM
    Aerosol Sci Technol; 2018 May; 52(12):1351-1369. PubMed ID: 37654799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.