These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28413355)

  • 1. A computational continuum model of poroelastic beds.
    Lācis U; Zampogna GA; Bagheri S
    Proc Math Phys Eng Sci; 2017 Mar; 473(2199):20160932. PubMed ID: 28413355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new framework for characterization of poroelastic materials using indentation.
    Esteki MH; Alemrajabi AA; Hall CM; Sheridan GK; Azadi M; Moeendarbary E
    Acta Biomater; 2020 Jan; 102():138-148. PubMed ID: 31715334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical modeling of bone as a multiscale poroelastic material by the homogenization technique.
    Perrin E; Bou-Saïd B; Massi F
    J Mech Behav Biomed Mater; 2019 Mar; 91():373-382. PubMed ID: 30660050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective equations governing an active poroelastic medium.
    Collis J; Brown DL; Hubbard ME; O'Dea RD
    Proc Math Phys Eng Sci; 2017 Feb; 473(2198):20160755. PubMed ID: 28293138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimum design requirements for a poroelastic mimic of articular cartilage.
    Tan WS; Moore AC; Stevens MM
    J Mech Behav Biomed Mater; 2023 Jan; 137():105528. PubMed ID: 36343521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale.
    Su L; Wang M; Yin J; Ti F; Yang J; Ma C; Liu S; Lu TJ
    Acta Biomater; 2023 Jan; 155():423-435. PubMed ID: 36372152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy study revealed velocity-dependence and nonlinearity of nanoscale poroelasticity of eukaryotic cells.
    Mollaeian K; Liu Y; Bi S; Ren J
    J Mech Behav Biomed Mater; 2018 Feb; 78():65-73. PubMed ID: 29136577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A homogenized two-phase computational framework for meso- and macroscale blood flow simulations.
    Karmakar A; Burgreen GW; Rydquist G; Antaki JF
    Comput Methods Programs Biomed; 2024 Apr; 247():108090. PubMed ID: 38394788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanics of Small-Scale Spherical Inclusions Using Nonlocal Poroelasticity Integrated with Light Gradient Boosting Machine.
    Farajpour A; Ingman WV
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solute Transport across the Lymphatic Vasculature in a Soft Skin Tissue.
    Han D; Huang Z; Rahimi E; Ardekani AM
    Biology (Basel); 2023 Jun; 12(7):. PubMed ID: 37508373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating the interfacial permeability for flow into a poroelastic medium.
    Xu Z; Yue P; Feng JJ
    Soft Matter; 2024 Jun; ():. PubMed ID: 38935026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of a normally-incident plane wave with a nonlinear poroelastic fracture.
    Nakagawa S; Pride SR; Nihei KT
    J Acoust Soc Am; 2019 Sep; 146(3):1705. PubMed ID: 31590557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poroelasticity as a Model of Soft Tissue Structure: Hydraulic Permeability Reconstruction for Magnetic Resonance Elastography in Silico.
    Sowinski DR; McGarry MDJ; Van Houten EEW; Gordon-Wylie S; Weaver JB; Paulsen KD
    Front Phys; 2021 Jan; 8():. PubMed ID: 36340954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a coupled model for numerical simulation of a multiphase flow system in a porous medium and a surface fluid.
    Hibi Y; Tomigashi A
    J Contam Hydrol; 2015 Sep; 180():34-55. PubMed ID: 26255905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear poroelastic cancellous bone anisotropy: trabecular solid elastic and fluid transport properties.
    Kohles SS; Roberts JB
    J Biomech Eng; 2002 Oct; 124(5):521-6. PubMed ID: 12405594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An active poroelastic model for mechanochemical patterns in protoplasmic droplets of Physarum polycephalum.
    Radszuweit M; Engel H; Bär M
    PLoS One; 2014; 9(6):e99220. PubMed ID: 24927427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indentation mapping revealed poroelastic, but not viscoelastic, properties spanning native zonal articular cartilage.
    Wahlquist JA; DelRio FW; Randolph MA; Aziz AH; Heveran CM; Bryant SJ; Neu CP; Ferguson VL
    Acta Biomater; 2017 Dec; 64():41-49. PubMed ID: 29037894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes of elastic constants and anisotropy patterns in trabecular bone during disuse-induced bone loss assessed by poroelastic ultrasound.
    Cardoso L; Schaffler MB
    J Biomech Eng; 2015 Jan; 137(1):0110081-9. PubMed ID: 25412022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber reinforced hydrated networks recapitulate the poroelastic mechanics of articular cartilage.
    Moore AC; Hennessy MG; Nogueira LP; Franks SJ; Taffetani M; Seong H; Kang YK; Tan WS; Miklosic G; El Laham R; Zhou K; Zharova L; King JR; Wagner B; Haugen HJ; Münch A; Stevens MM
    Acta Biomater; 2023 Sep; 167():69-82. PubMed ID: 37331613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.