BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 28413974)

  • 1. Identification of Cell Cycle-Regulated Genes by Convolutional Neural Network.
    Liu C; Cui P; Huang T
    Comb Chem High Throughput Screen; 2017; 20(7):603-611. PubMed ID: 28413974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of human circadian genes based on time course gene expression profiles by using a deep learning method.
    Cui P; Zhong T; Wang Z; Wang T; Zhao H; Liu C; Lu H
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2274-2283. PubMed ID: 29241666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian detection of periodic mRNA time profiles without use of training examples.
    Andersson CR; Isaksson A; Gustafsson MG
    BMC Bioinformatics; 2006 Feb; 7():63. PubMed ID: 16469110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of computational methods for the identification of cell cycle-regulated genes.
    de Lichtenberg U; Jensen LJ; Fausbøll A; Jensen TS; Bork P; Brunak S
    Bioinformatics; 2005 Apr; 21(7):1164-71. PubMed ID: 15513999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting biological associations between genes based on the theory of phase synchronization.
    Kim CS; Riikonen P; Salakoski T
    Biosystems; 2008 May; 92(2):99-113. PubMed ID: 18289772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic algorithm for inferring qualitative models of gene regulatory networks.
    Yun Z; Keong KC
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():353-62. PubMed ID: 16448028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New weakly expressed cell cycle-regulated genes in yeast.
    de Lichtenberg U; Wernersson R; Jensen TS; Nielsen HB; Fausbøll A; Schmidt P; Hansen FB; Knudsen S; Brunak S
    Yeast; 2005 Nov; 22(15):1191-201. PubMed ID: 16278933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic learning of gene functional classes from DNA array expression data by using multilayer perceptrons.
    Mateos A; Dopazo J; Jansen R; Tu Y; Gerstein M; Stolovitzky G
    Genome Res; 2002 Nov; 12(11):1703-15. PubMed ID: 12421757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Cell Phenotype Classification Using Deep Convolutional Neural Networks.
    Dürr O; Sick B
    J Biomol Screen; 2016 Oct; 21(9):998-1003. PubMed ID: 26950929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting enhancers with deep convolutional neural networks.
    Min X; Zeng W; Chen S; Chen N; Chen T; Jiang R
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):478. PubMed ID: 29219068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polynomial model approach for resynchronization analysis of cell-cycle gene expression data.
    Qiu P; Wang ZJ; Liu KJ
    Bioinformatics; 2006 Apr; 22(8):959-66. PubMed ID: 16434439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The properties of hub proteins in a yeast-aggregated cell cycle network and its phase sub-networks.
    Wu X; Guo J; Zhang DY; Lin K
    Proteomics; 2009 Oct; 9(20):4812-24. PubMed ID: 19743420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient algorithm to explore liquid association on a genome-wide scale.
    Gunderson T; Ho YY
    BMC Bioinformatics; 2014 Nov; 15(1):371. PubMed ID: 25431229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Formal Concept Analysis to Identify Negative Correlations in Gene Expression Data.
    Tu X; Wang Y; Zhang M; Wu J
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(2):380-91. PubMed ID: 27045834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Convolutional Extreme Learning Machine and Its Application in Handwritten Digit Classification.
    Pang S; Yang X
    Comput Intell Neurosci; 2016; 2016():3049632. PubMed ID: 27610128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diverse functions of spindle assembly checkpoint genes in Saccharomyces cerevisiae.
    Daniel JA; Keyes BE; Ng YP; Freeman CO; Burke DJ
    Genetics; 2006 Jan; 172(1):53-65. PubMed ID: 16157669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein.
    Raghava GP; Han JH
    BMC Bioinformatics; 2005 Mar; 6():59. PubMed ID: 15773999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications.
    Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D
    Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AVID: an integrative framework for discovering functional relationships among proteins.
    Jiang T; Keating AE
    BMC Bioinformatics; 2005 Jun; 6():136. PubMed ID: 15929793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.