BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 28413974)

  • 21. Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions.
    Qian J; Dolled-Filhart M; Lin J; Yu H; Gerstein M
    J Mol Biol; 2001 Dec; 314(5):1053-66. PubMed ID: 11743722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic complex formation during the yeast cell cycle.
    de Lichtenberg U; Jensen LJ; Brunak S; Bork P
    Science; 2005 Feb; 307(5710):724-7. PubMed ID: 15692050
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Connectivity in the yeast cell cycle transcription network: inferences from neural networks.
    Hart CE; Mjolsness E; Wold BJ
    PLoS Comput Biol; 2006 Dec; 2(12):e169. PubMed ID: 17194216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading.
    Li S; Jiang H; Pang W
    Comput Biol Med; 2017 May; 84():156-167. PubMed ID: 28365546
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new enrichment approach identifies genes that alter cell cycle progression in Saccharomyces cerevisiae.
    Bogomolnaya LM; Pathak R; Cham R; Guo J; Surovtseva YV; Jaeckel L; Polymenis M
    Curr Genet; 2004 Jun; 45(6):350-9. PubMed ID: 15022016
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving deep convolutional neural networks with mixed maxout units.
    Zhao HZ; Liu FX; Li LY
    PLoS One; 2017; 12(7):e0180049. PubMed ID: 28727737
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae.
    Moriya H; Shimizu-Yoshida Y; Kitano H
    PLoS Genet; 2006 Jul; 2(7):e111. PubMed ID: 16839182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inference of gene interaction networks using conserved subsequential patterns from multiple time course gene expression datasets.
    Liu Q; Song R; Li J
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S4. PubMed ID: 26681650
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robustness and adaptation reveal plausible cell cycle controlling subnetwork in Saccharomyces cerevisiae.
    Huang JY; Huang CW; Kao KC; Lai PY
    Gene; 2013 Apr; 518(1):35-41. PubMed ID: 23274654
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of cell cycle-specific gene expression through cyclin-dependent kinase-mediated phosphorylation of the forkhead transcription factor Fkh2p.
    Pic-Taylor A; Darieva Z; Morgan BA; Sharrocks AD
    Mol Cell Biol; 2004 Nov; 24(22):10036-46. PubMed ID: 15509804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Bayesian network driven approach to model the transcriptional response to nitric oxide in Saccharomyces cerevisiae.
    Zhu J; Jambhekar A; Sarver A; DeRisi J
    PLoS One; 2006 Dec; 1(1):e94. PubMed ID: 17183726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media.
    Lai LC; Kosorukoff AL; Burke PV; Kwast KE
    Mol Cell Biol; 2005 May; 25(10):4075-91. PubMed ID: 15870279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated analysis of high-content microscopy data with deep learning.
    Kraus OZ; Grys BT; Ba J; Chong Y; Frey BJ; Boone C; Andrews BJ
    Mol Syst Biol; 2017 Apr; 13(4):924. PubMed ID: 28420678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A supervised weighted similarity measure for gene expressions using biological knowledge.
    Ray SS; Misra S
    Gene; 2016 Dec; 595(2):150-160. PubMed ID: 27688070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combining pattern discovery and discriminant analysis to predict gene co-regulation.
    Simonis N; Wodak SJ; Cohen GN; van Helden J
    Bioinformatics; 2004 Oct; 20(15):2370-9. PubMed ID: 15073004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep Ranking for Person Re-Identification via Joint Representation Learning.
    Chen SZ; Guo CC; Lai JH
    IEEE Trans Image Process; 2016 May; 25(5):2353-67. PubMed ID: 27019494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell cycle regulated gene expression in yeasts.
    McInerny CJ
    Adv Genet; 2011; 73():51-85. PubMed ID: 21310294
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Knowledge-assisted recognition of cluster boundaries in gene expression data.
    Okada Y; Sahara T; Mitsubayashi H; Ohgiya S; Nagashima T
    Artif Intell Med; 2005; 35(1-2):171-83. PubMed ID: 16054350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time-Course Analysis of Gene Expression During the Saccharomyces cerevisiae Hypoxic Response.
    Bendjilali N; MacLeon S; Kalra G; Willis SD; Hossian AK; Avery E; Wojtowicz O; Hickman MJ
    G3 (Bethesda); 2017 Jan; 7(1):221-231. PubMed ID: 27883312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.