BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 28414045)

  • 1. Viscosities encountered during the cryopreservation of dimethyl sulphoxide systems.
    Kilbride P; Morris GJ
    Cryobiology; 2017 Jun; 76():92-97. PubMed ID: 28414045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The high viscosity encountered during freezing in glycerol solutions: effects on cryopreservation.
    Morris GJ; Goodrich M; Acton E; Fonseca F
    Cryobiology; 2006 Jun; 52(3):323-34. PubMed ID: 16499898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of hydroxyapatite nanoparticles on the viscosity of dimethyl sulfoxide-H2O-NaCl and glycerol-H2O-NaCl ternary systems at subzero temperatures.
    Yi J; Tang H; Zhao G
    Cryobiology; 2014 Oct; 69(2):291-8. PubMed ID: 25127873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscosities of the ternary solution dimethyl sulfoxide/water/sodium chloride at subzero temperatures and their application in cryopreservation.
    Zhang S; Yu X; Chen Z; Chen G
    Cryobiology; 2013 Apr; 66(2):186-91. PubMed ID: 23376371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principles of cryopreservation.
    Pegg DE
    Methods Mol Biol; 2015; 1257():3-19. PubMed ID: 25428001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of common cryoprotectants on critical warming rates and ice formation in aqueous solutions.
    Hopkins JB; Badeau R; Warkentin M; Thorne RE
    Cryobiology; 2012 Dec; 65(3):169-78. PubMed ID: 22728046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VISCOSITIES OF CONCENTRATED NaCl-H2O AND Me2SO-NaCl-H2O SOLUTIONS AT SUBZERO TEMPERATURES.
    Shaozhi Z; Qing J; Juli F; Guangming C
    Cryo Letters; 2016; 37(1):19-26. PubMed ID: 26964021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooling dynamics of droplets exposed to solid surface freezing and vitrification.
    Liu D; Oldenhof H; Luo X; Braun T; Sieme H; Wolkers WF
    Cryobiology; 2024 Jun; 115():104879. PubMed ID: 38447705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principles of cryopreservation.
    Pegg DE
    Methods Mol Biol; 2007; 368():39-57. PubMed ID: 18080461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Cryoprotectants Concentration on Ice Crystal Propagation Velocity.
    Amir A; Yehudit N; Pasquale P; Roy A
    Biopreserv Biobank; 2023 Dec; 21(6):547-553. PubMed ID: 36383132
    [No Abstract]   [Full Text] [Related]  

  • 11. Spermatozoa from the maned wolf (Chrysocyon brachyurus) display typical canid hyper-sensitivity to osmotic and freezing-induced injury, but respond favorably to dimethyl sulfoxide.
    Johnson AE; Freeman EW; Wildt DE; Songsasen N
    Cryobiology; 2014 Jun; 68(3):361-70. PubMed ID: 24731851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of temperature at which slow cooling is terminated and of thawing rate on the survival of one-cell mouse embryos frozen in dimethyl sulfoxide or 1,2-propanediol solutions.
    Van den Abbeel E; Van der Elst J; Van Steirteghem AC
    Cryobiology; 1994 Oct; 31(5):423-33. PubMed ID: 7988151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic aspects of vitrification.
    Wowk B
    Cryobiology; 2010 Feb; 60(1):11-22. PubMed ID: 19538955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of fructans as natural cryoprotectant agents in plant cryopreservation: concept validation on Arabidopsis thaliana L.
    Ilter IB; Van den Ende W; Struyf T; Oner ET; Ciftci YO
    Cryo Letters; 2024; 45(4):221-230. PubMed ID: 38809786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vitrification tendency and stability of DP6-based vitrification solutions for complex tissue cryopreservation.
    Wowk B; Fahy GM; Ahmedyar S; Taylor MJ; Rabin Y
    Cryobiology; 2018 Jun; 82():70-77. PubMed ID: 29660316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glass transition behavior of the vitrification solutions containing propanediol, dimethyl sulfoxide and polyvinyl alcohol.
    Wang HY; Lu SS; Lun ZR
    Cryobiology; 2009 Feb; 58(1):115-117. PubMed ID: 19026625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of optimal techniques for cryopreservation of human platelets. I. Platelet activation during cold storage (at 22 and 8 degrees C) and cryopreservation.
    Gao DY; Neff K; Xiao HY; Matsubayashi H; Cui XD; Bonderman P; Bonderman D; Harvey K; McIntyre JA; Critser J; Miraglia CC; Reid T
    Cryobiology; 1999 May; 38(3):225-35. PubMed ID: 10328912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heart valve cryopreservation: protocol for addition of dimethyl sulphoxide and amelioration of putative amphotericin B toxicity.
    Birtsas V; Armitage WJ
    Cryobiology; 2005 Apr; 50(2):139-43. PubMed ID: 15843003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A refinement to the liquidus-tracking method for vitreous preservation of articular cartilage.
    Yu XY; Chen GM; Zhang SZ
    Cryo Letters; 2013; 34(3):267-76. PubMed ID: 23812317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the crystallization and vitrification of cryopreserved cells.
    Lin M; Cao H; Meng Q; Li J; Jiang P
    Cryobiology; 2022 Jun; 106():13-23. PubMed ID: 35550791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.