These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28414227)

  • 1. Quantifying the Role of Orbital Contraction in Chemical Bonding.
    Levine DS; Head-Gordon M
    J Phys Chem Lett; 2017 May; 8(9):1967-1972. PubMed ID: 28414227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nature of the chemical bond revisited: an energy-partitioning analysis of nonpolar bonds.
    Kovács A; Esterhuysen C; Frenking G
    Chemistry; 2005 Mar; 11(6):1813-25. PubMed ID: 15672434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variational Energy Decomposition Analysis of Chemical Bonding. 1. Spin-Pure Analysis of Single Bonds.
    Levine DS; Horn PR; Mao Y; Head-Gordon M
    J Chem Theory Comput; 2016 Oct; 12(10):4812-4820. PubMed ID: 27571026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orbital overlap and chemical bonding.
    Krapp A; Bickelhaupt FM; Frenking G
    Chemistry; 2006 Dec; 12(36):9196-216. PubMed ID: 17024702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximum bonding fragment orbitals for deciphering complex chemical interactions.
    Wang Y
    Phys Chem Chem Phys; 2018 May; 20(20):13792-13809. PubMed ID: 29745413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the paucity of molecular actinide complexes with unsupported metal-metal bonds: a comparative investigation of the electronic structure and metal-metal bonding in U2X6 (X = Cl, F, OH, NH2, CH3) complexes and d-block analogues.
    Cavigliasso G; Kaltsoyannis N
    Inorg Chem; 2006 Aug; 45(17):6828-39. PubMed ID: 16903739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why does electron sharing lead to covalent bonding? A variational analysis.
    Ruedenberg K; Schmidt MW
    J Comput Chem; 2007 Jan; 28(1):391-410. PubMed ID: 17143869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A challenge to chemical intuition: donor-acceptor interactions in H3B-L and H2B+-L (L=CO; EC5H5, E=N-Bi).
    Erhardt S; Frenking G
    Chemistry; 2006 Jun; 12(17):4620-9. PubMed ID: 16598798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study.
    Brovarets' OO; Yurenko YP; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(6):993-1022. PubMed ID: 23730732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy Decomposition Analysis for Metal Surface-Adsorbate Interactions by Block Localized Wave Functions.
    Staub R; Iannuzzi M; Khaliullin RZ; Steinmann SN
    J Chem Theory Comput; 2019 Jan; 15(1):265-275. PubMed ID: 30462497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear M[triple bond]E-Me versus bent M-E-Me: bonding analysis in heavier metal-ylidyne complexes [(Cp)(CO)2M[triple bond]EMe] and metallo-ylidenes [(Cp)(CO)3M-EMe] (M = Cr, Mo, W; E = Si, Ge, Sn, Pb).
    Pandey KK; Lledós A
    Inorg Chem; 2009 Apr; 48(7):2748-59. PubMed ID: 19256519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bonding analysis of metal-metal multiple bonds in R3M-M'R3 (M, M' = Cr, Mo, W; R = Cl, NMe2).
    Takagi N; Krapp A; Frenking G
    Inorg Chem; 2011 Feb; 50(3):819-26. PubMed ID: 21210644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new look at the ylidic bond in phosphorus ylides and related compounds: energy decomposition analysis combined with a domain-averaged fermi hole analysis.
    Calhorda MJ; Krapp A; Frenking G
    J Phys Chem A; 2007 Apr; 111(15):2859-69. PubMed ID: 17388399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The significant role of the intermolecular CH⋯O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: a comprehensive theoretical investigation.
    Brovarets' OO; Yurenko YP; Hovorun DM
    J Biomol Struct Dyn; 2015; 33(8):1624-52. PubMed ID: 25350312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unrestricted absolutely localized molecular orbitals for energy decomposition analysis: theory and applications to intermolecular interactions involving radicals.
    Horn PR; Sundstrom EJ; Baker TA; Head-Gordon M
    J Chem Phys; 2013 Apr; 138(13):134119. PubMed ID: 23574220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of orbital-specific virtuals in local Møller-Plesset perturbation theory.
    Kurashige Y; Yang J; Chan GK; Manby FR
    J Chem Phys; 2012 Mar; 136(12):124106. PubMed ID: 22462834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accounting for the differences in the structures and relative energies of the highly homoatomic np pi-np pi (n > or = 3)-bonded S2I4 2+, the Se-I pi-bonded Se2I4 2+, and their higher-energy isomers by AIM, MO, NBO, and VB methodologies.
    Brownridge S; Crawford MJ; Du H; Harcourt RD; Knapp C; Laitinen RS; Passmore J; Rautiainen JM; Suontamo RJ; Valkonen J
    Inorg Chem; 2007 Feb; 46(3):681-99. PubMed ID: 17257010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new approach of evaluating bond dissociation energy from eigenvalue of bonding orbital-connection matrix for C-C and C-H bonds in alkane.
    Cao C; Yuan H
    J Chem Inf Comput Sci; 2003; 43(2):600-8. PubMed ID: 12653527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An energy decomposition analysis for second-order Møller-Plesset perturbation theory based on absolutely localized molecular orbitals.
    Thirman J; Head-Gordon M
    J Chem Phys; 2015 Aug; 143(8):084124. PubMed ID: 26328835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy Decomposition Analysis Based on Absolutely Localized Molecular Orbitals for Large-Scale Density Functional Theory Calculations in Drug Design.
    Phipps MJ; Fox T; Tautermann CS; Skylaris CK
    J Chem Theory Comput; 2016 Jul; 12(7):3135-48. PubMed ID: 27248370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.