BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 28414281)

  • 1. [Analysis of contribution of protein phosphorylation in the development of the diseases].
    Zavialova MG; Zgoda VG; Nikolaev EN
    Biomed Khim; 2017 Mar; 63(2):101-114. PubMed ID: 28414281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PhosphoPath: Visualization of Phosphosite-centric Dynamics in Temporal Molecular Networks.
    Raaijmakers LM; Giansanti P; Possik PA; Mueller J; Peeper DS; Heck AJ; Altelaar AF
    J Proteome Res; 2015 Oct; 14(10):4332-41. PubMed ID: 26317507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Phosphorylated Proteins Using Mass Spectrometry.
    Yu LR; Veenstra TD
    Curr Protein Pept Sci; 2021; 22(2):148-157. PubMed ID: 33231146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling proteoforms: promising follow-up of proteomics for biomarker discovery.
    Lisitsa A; Moshkovskii S; Chernobrovkin A; Ponomarenko E; Archakov A
    Expert Rev Proteomics; 2014 Feb; 11(1):121-9. PubMed ID: 24437377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Top Down Proteomics Reveals Mature Proteoforms Expressed in Subcellular Fractions of the Echinococcus granulosus Preadult Stage.
    Lorenzatto KR; Kim K; Ntai I; Paludo GP; Camargo de Lima J; Thomas PM; Kelleher NL; Ferreira HB
    J Proteome Res; 2015 Nov; 14(11):4805-14. PubMed ID: 26465659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technologies and challenges in large-scale phosphoproteomics.
    Engholm-Keller K; Larsen MR
    Proteomics; 2013 Mar; 13(6):910-31. PubMed ID: 23404676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How can platelet proteomics best be used to interrogate disease?
    Zellner M
    Platelets; 2023 Dec; 34(1):2220046. PubMed ID: 37272536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A large-scale proteomic analysis of human embryonic stem cells.
    Schulz TC; Swistowska AM; Liu Y; Swistowski A; Palmarini G; Brimble SN; Sherrer E; Robins AJ; Rao MS; Zeng X
    BMC Genomics; 2007 Dec; 8():478. PubMed ID: 18162134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intact-Mass Analysis Facilitating the Identification of Large Human Heart Proteoforms.
    Schaffer LV; Tucholski T; Shortreed MR; Ge Y; Smith LM
    Anal Chem; 2019 Sep; 91(17):10937-10942. PubMed ID: 31393705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mass graph-based approach for the identification of modified proteoforms using top-down tandem mass spectra.
    Kou Q; Wu S; Tolic N; Paša-Tolic L; Liu Y; Liu X
    Bioinformatics; 2017 May; 33(9):1309-1316. PubMed ID: 28453668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass Spectrometric (MS) Analysis of Proteins and Peptides.
    Jayathirtha M; Dupree EJ; Manzoor Z; Larose B; Sechrist Z; Neagu AN; Petre BA; Darie CC
    Curr Protein Pept Sci; 2021; 22(2):92-120. PubMed ID: 32713333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human proteins with target sites of multiple post-translational modification types are more prone to be involved in disease.
    Huang Q; Chang J; Cheung MK; Nong W; Li L; Lee MT; Kwan HS
    J Proteome Res; 2014 Jun; 13(6):2735-48. PubMed ID: 24754740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global Analysis of Protein Expression and Phosphorylation Levels in Nicotine-Treated Pancreatic Stellate Cells.
    Paulo JA; Gaun A; Gygi SP
    J Proteome Res; 2015 Oct; 14(10):4246-56. PubMed ID: 26265067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Proteases for Mass Spectrometry-Based Post Translational Modification Analyses.
    Tran DT
    Proteomics; 2019 May; 19(10):e1700471. PubMed ID: 30474189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of molecular technologies for phosphoproteomic analysis of clinical samples.
    Pierobon M; Wulfkuhle J; Liotta L; Petricoin E
    Oncogene; 2015 Feb; 34(7):805-14. PubMed ID: 24608425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sample preparation for phosphoproteomic analysis of circadian time series in Arabidopsis thaliana.
    Krahmer J; Hindle MM; Martin SF; Le Bihan T; Millar AJ
    Methods Enzymol; 2015; 551():405-31. PubMed ID: 25662467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification, Quantification, and Site Localization of Protein Posttranslational Modifications via Mass Spectrometry-Based Proteomics.
    Ke M; Shen H; Wang L; Luo S; Lin L; Yang J; Tian R
    Adv Exp Med Biol; 2016; 919():345-382. PubMed ID: 27975226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics characterization of exosome cargo.
    Schey KL; Luther JM; Rose KL
    Methods; 2015 Oct; 87():75-82. PubMed ID: 25837312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Splice-Junction-Based Mapping of Alternative Isoforms in the Human Proteome.
    Lau E; Han Y; Williams DR; Thomas CT; Shrestha R; Wu JC; Lam MPY
    Cell Rep; 2019 Dec; 29(11):3751-3765.e5. PubMed ID: 31825849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Potential of Proteomics in Understanding Neurodegeneration.
    Pal R; Larsen JP; Moller SG
    Int Rev Neurobiol; 2015; 121():25-58. PubMed ID: 26315761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.