These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 28414305)
1. SPOP regulates prostate epithelial cell proliferation and promotes ubiquitination and turnover of c-MYC oncoprotein. Geng C; Kaochar S; Li M; Rajapakshe K; Fiskus W; Dong J; Foley C; Dong B; Zhang L; Kwon OJ; Shah SS; Bolaki M; Xin L; Ittmann M; O'Malley BW; Coarfa C; Mitsiades N Oncogene; 2017 Aug; 36(33):4767-4777. PubMed ID: 28414305 [TBL] [Abstract][Full Text] [Related]
2. Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Geng C; He B; Xu L; Barbieri CE; Eedunuri VK; Chew SA; Zimmermann M; Bond R; Shou J; Li C; Blattner M; Lonard DM; Demichelis F; Coarfa C; Rubin MA; Zhou P; O'Malley BW; Mitsiades N Proc Natl Acad Sci U S A; 2013 Apr; 110(17):6997-7002. PubMed ID: 23559371 [TBL] [Abstract][Full Text] [Related]
3. Androgen receptor is the key transcriptional mediator of the tumor suppressor SPOP in prostate cancer. Geng C; Rajapakshe K; Shah SS; Shou J; Eedunuri VK; Foley C; Fiskus W; Rajendran M; Chew SA; Zimmermann M; Bond R; He B; Coarfa C; Mitsiades N Cancer Res; 2014 Oct; 74(19):5631-43. PubMed ID: 25274033 [TBL] [Abstract][Full Text] [Related]
4. SPOP promotes CDCA5 degradation to regulate prostate cancer progression via the AKT pathway. Luo Z; Wang J; Zhu Y; Sun X; He C; Cai M; Ma J; Wang Y; Han S Neoplasia; 2021 Oct; 23(10):1037-1047. PubMed ID: 34509929 [TBL] [Abstract][Full Text] [Related]
5. CHD1 and SPOP synergistically protect prostate epithelial cells from DNA damage. Zhu Y; Wen J; Huang G; Mittlesteadt J; Wen X; Lu X Prostate; 2021 Jan; 81(1):81-88. PubMed ID: 33022763 [TBL] [Abstract][Full Text] [Related]
6. Mutated SPOP E3 Ligase Promotes 17βHSD4 Protein Degradation to Drive Androgenesis and Prostate Cancer Progression. Shi L; Yan Y; He Y; Yan B; Pan Y; Orme JJ; Zhang J; Xu W; Pang J; Huang H Cancer Res; 2021 Jul; 81(13):3593-3606. PubMed ID: 33762355 [TBL] [Abstract][Full Text] [Related]
7. SPOP promotes ATF2 ubiquitination and degradation to suppress prostate cancer progression. Ma J; Chang K; Peng J; Shi Q; Gan H; Gao K; Feng K; Xu F; Zhang H; Dai B; Zhu Y; Shi G; Shen Y; Zhu Y; Qin X; Li Y; Zhang P; Ye D; Wang C J Exp Clin Cancer Res; 2018 Jul; 37(1):145. PubMed ID: 29996942 [TBL] [Abstract][Full Text] [Related]
8. MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells. Iwata T; Schultz D; Hicks J; Hubbard GK; Mutton LN; Lotan TL; Bethel C; Lotz MT; Yegnasubramanian S; Nelson WG; Dang CV; Xu M; Anele U; Koh CM; Bieberich CJ; De Marzo AM PLoS One; 2010 Feb; 5(2):e9427. PubMed ID: 20195545 [TBL] [Abstract][Full Text] [Related]
9. Prostate cancer-associated mutation in SPOP impairs its ability to target Cdc20 for poly-ubiquitination and degradation. Wu F; Dai X; Gan W; Wan L; Li M; Mitsiades N; Wei W; Ding Q; Zhang J Cancer Lett; 2017 Jan; 385():207-214. PubMed ID: 27780719 [TBL] [Abstract][Full Text] [Related]
10. Destruction of full-length androgen receptor by wild-type SPOP, but not prostate-cancer-associated mutants. An J; Wang C; Deng Y; Yu L; Huang H Cell Rep; 2014 Feb; 6(4):657-69. PubMed ID: 24508459 [TBL] [Abstract][Full Text] [Related]
11. Dysregulation of INF2-mediated mitochondrial fission in SPOP-mutated prostate cancer. Jin X; Wang J; Gao K; Zhang P; Yao L; Tang Y; Tang L; Ma J; Xiao J; Zhang E; Zhu J; Zhang B; Zhao SM; Li Y; Ren S; Huang H; Yu L; Wang C PLoS Genet; 2017 Apr; 13(4):e1006748. PubMed ID: 28448495 [TBL] [Abstract][Full Text] [Related]
12. Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT-mTORC1 activation. Zhang P; Wang D; Zhao Y; Ren S; Gao K; Ye Z; Wang S; Pan CW; Zhu Y; Yan Y; Yang Y; Wu D; He Y; Zhang J; Lu D; Liu X; Yu L; Zhao S; Li Y; Lin D; Wang Y; Wang L; Chen Y; Sun Y; Wang C; Huang H Nat Med; 2017 Sep; 23(9):1055-1062. PubMed ID: 28805822 [TBL] [Abstract][Full Text] [Related]
13. Destruction of DDIT3/CHOP protein by wild-type SPOP but not prostate cancer-associated mutants. Zhang P; Gao K; Tang Y; Jin X; An J; Yu H; Wang H; Zhang Y; Wang D; Huang H; Yu L; Wang C Hum Mutat; 2014 Sep; 35(9):1142-51. PubMed ID: 24990631 [TBL] [Abstract][Full Text] [Related]
14. SPOP mutation drives prostate neoplasia without stabilizing oncogenic transcription factor ERG. Shoag J; Liu D; Blattner M; Sboner A; Park K; Deonarine L; Robinson BD; Mosquera JM; Chen Y; Rubin MA; Barbieri CE J Clin Invest; 2018 Jan; 128(1):381-386. PubMed ID: 29202479 [TBL] [Abstract][Full Text] [Related]
15. SPOP-mediated ubiquitination and degradation of PDK1 suppresses AKT kinase activity and oncogenic functions. Jiang Q; Zheng N; Bu L; Zhang X; Zhang X; Wu Y; Su Y; Wang L; Zhang X; Ren S; Dai X; Wu D; Xie W; Wei W; Zhu Y; Guo J Mol Cancer; 2021 Aug; 20(1):100. PubMed ID: 34353330 [TBL] [Abstract][Full Text] [Related]
16. Phosphorylation-dependent regulation of SPOP by LIMK2 promotes castration-resistant prostate cancer. Nikhil K; Haymour HS; Kamra M; Shah K Br J Cancer; 2021 Mar; 124(5):995-1008. PubMed ID: 33311589 [TBL] [Abstract][Full Text] [Related]
17. ERK1/2 inhibits Cullin 3/SPOP-mediated PrLZ ubiquitination and degradation to modulate prostate cancer progression. Fan Y; Hou T; Dan W; Zhu Y; Liu B; Wei Y; Wang Z; Gao Y; Zeng J; Li L Cell Death Differ; 2022 Aug; 29(8):1611-1624. PubMed ID: 35194188 [TBL] [Abstract][Full Text] [Related]
18. Speckle-type POZ protein suppresses lipid accumulation and prostate cancer growth by stabilizing fatty acid synthase. Gang X; Xuan L; Zhao X; Lv Y; Li F; Wang Y; Wang G Prostate; 2019 Jun; 79(8):864-871. PubMed ID: 30955223 [TBL] [Abstract][Full Text] [Related]
19. Prostate cancer-associated SPOP mutations lead to genomic instability through disruption of the SPOP-HIPK2 axis. Jin X; Qing S; Li Q; Zhuang H; Shen L; Li J; Qi H; Lin T; Lin Z; Wang J; Cao X; Yang J; Ma Q; Cong L; Xi Y; Fang S; Meng X; Gong Z; Ye M; Wang S; Wang C; Gao K Nucleic Acids Res; 2021 Jul; 49(12):6788-6803. PubMed ID: 34133717 [TBL] [Abstract][Full Text] [Related]