These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 28414344)

  • 1. Measurement of thickness of highly inhomogeneous crude oil slicks.
    Cheemalapati S; Forth HP; Wang H; Konnaiyan KR; Morris JM; Pyayt AL
    Appl Opt; 2017 Apr; 56(11):E72-E76. PubMed ID: 28414344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Spectral response analysis of offshore thin oil slicks].
    Lu YC; Tian QJ; Qi XP; Wang JJ; Wang XC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Apr; 29(4):986-9. PubMed ID: 19626887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of surface oil thickness distribution patterns observed during the Deepwater Horizon (MC-252) oil spill with aerial and satellite remote sensing.
    Svejkovsky J; Hess M; Muskat J; Nedwed TJ; McCall J; Garcia O
    Mar Pollut Bull; 2016 Sep; 110(1):162-176. PubMed ID: 27389454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal infrared emissivity spectrum and its characteristics of crude oil slick covered seawater.
    Xiong P; Gu XF; Yu T; Meng QY; Li JG; Shi JX; Cheng Y; Wang L; Liu WS; Liu QY; Zhao LM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Nov; 34(11):2953-60. PubMed ID: 25752038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of airborne oil thickness measurements.
    Brown CE; Fingas MF
    Mar Pollut Bull; 2003; 47(9-12):485-92. PubMed ID: 12899892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal chemical composition changes in water below a crude oil slick irradiated with natural sunlight.
    Roman-Hubers AT; Aeppli C; Dodds JN; Baker ES; McFarlin KM; Letinski DJ; Zhao L; Mitchell DA; Parkerton TF; Prince RC; Nedwed T; Rusyn I
    Mar Pollut Bull; 2022 Dec; 185(Pt B):114360. PubMed ID: 36413931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forecasting Photo-Dissolution for Future Oil Spills at Sea: Effects of Oil Properties and Composition.
    Freeman DH; Nelson RK; Pate K; Reddy CM; Ward CP
    Environ Sci Technol; 2024 Aug; 58(34):15236-45. PubMed ID: 39137011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental L-Band Airborne SAR for Oil Spill Response at Sea and in Coastal Waters.
    Jones CE; Holt B
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29470391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An inverse planned oil release validation method for estimating oil slick thickness from thermal contrast remote sensing by in-scene calibration.
    Leifer I; Melton C; Daniel WJ; Kim JD; Marston C
    MethodsX; 2022; 9():101756. PubMed ID: 35800982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optical remote sensing model for estimating oil slick thickness based on two-beam interference theory.
    Lu Y; Li X; Tian Q; Han W
    Opt Express; 2012 Oct; 20(22):24496-504. PubMed ID: 23187213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioaccumulation of petroleum hydrocarbons in fiddler crabs (Uca minax) exposed to weathered MC-252 crude oil alone and in mixture with an oil dispersant.
    Chase DA; Edwards DS; Qin G; Wages MR; Willming MM; Anderson TA; Maul JD
    Sci Total Environ; 2013 Feb; 444():121-7. PubMed ID: 23268140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exxon Valdez to Deepwater Horizon: comparable toxicity of both crude oils to fish early life stages.
    Incardona JP; Swarts TL; Edmunds RC; Linbo TL; Aquilina-Beck A; Sloan CA; Gardner LD; Block BA; Scholz NL
    Aquat Toxicol; 2013 Oct; 142-143():303-16. PubMed ID: 24080042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters--a case study in the Arabian Gulf.
    Zhao J; Temimi M; Ghedira H; Hu C
    Opt Express; 2014 Jun; 22(11):13755-72. PubMed ID: 24921568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling spreading of oil slicks based on random walk methods and Voronoi diagrams.
    Durgut İ; Reed M
    Mar Pollut Bull; 2017 May; 118(1-2):93-100. PubMed ID: 28228240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared contrast of crude-oil-covered water surfaces.
    Shih WC; Andrews AB
    Opt Lett; 2008 Dec; 33(24):3019-21. PubMed ID: 19079527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic Toxicity of Unweathered and Weathered Macondo Oils to Mysid Shrimp (Americamysis bahia) and Inland Silversides (Menidia beryllina).
    Echols B; Smith A; Gardinali PR; Rand GM
    Arch Environ Contam Toxicol; 2016 Jul; 71(1):78-86. PubMed ID: 27090525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origins and features of oil slicks in the Bohai Sea detected from satellite SAR images.
    Ding Y; Cao C; Huang J; Song Y; Liu G; Wu L; Wan Z
    Mar Pollut Bull; 2016 May; 106(1-2):149-54. PubMed ID: 26988390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refined use of AISA band-differences for oil slick identification beyond brightness contrast reversal under sunglint.
    Jin S; Lu Y; Liu Y; Wei X; Lu W; Wang D; Mao Z
    Opt Express; 2018 Dec; 26(26):33748-33755. PubMed ID: 30650807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea.
    Angelliaume S; Ceamanos X; Viallefont-Robinet F; Baqué R; Déliot P; Miegebielle V
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28767059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of sediment amended with Deepwater Horizon incident slick oil on the infaunal amphipod Leptocheirus plumulosus.
    Lotufo GR; Farrar JD; Biedenbach JM; Laird JG; Krasnec MO; Lay C; Morris JM; Gielazyn ML
    Mar Pollut Bull; 2016 Aug; 109(1):253-258. PubMed ID: 27267114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.