These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28414515)

  • 1. Zseq: An Approach for Preprocessing Next-Generation Sequencing Data.
    Alkhateeb A; Rueda L
    J Comput Biol; 2017 Aug; 24(8):746-755. PubMed ID: 28414515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation and Validation of Assembling Corrected PacBio Long Reads for Microbial Genome Completion via Hybrid Approaches.
    Lin HH; Liao YC
    PLoS One; 2015; 10(12):e0144305. PubMed ID: 26641475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RAMBO-K: Rapid and Sensitive Removal of Background Sequences from Next Generation Sequencing Data.
    Tausch SH; Renard BY; Nitsche A; Dabrowski PW
    PLoS One; 2015; 10(9):e0137896. PubMed ID: 26379285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SeqAssist: a novel toolkit for preliminary analysis of next-generation sequencing data.
    Peng Y; Maxwell AS; Barker ND; Laird JG; Kennedy AJ; Wang N; Zhang C; Gong P
    BMC Bioinformatics; 2014; 15 Suppl 11(Suppl 11):S10. PubMed ID: 25349885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demonstrating the utility of flexible sequence queries against indexed short reads with FlexTyper.
    Richmond PA; Kaye AM; Kounkou GJ; Av-Shalom TV; Wasserman WW
    PLoS Comput Biol; 2021 Mar; 17(3):e1008815. PubMed ID: 33750951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RepAHR: an improved approach for de novo repeat identification by assembly of the high-frequency reads.
    Liao X; Gao X; Zhang X; Wu FX; Wang J
    BMC Bioinformatics; 2020 Oct; 21(1):463. PubMed ID: 33076827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The present and future of de novo whole-genome assembly.
    Sohn JI; Nam JW
    Brief Bioinform; 2018 Jan; 19(1):23-40. PubMed ID: 27742661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QuorUM: An Error Corrector for Illumina Reads.
    Marçais G; Yorke JA; Zimin A
    PLoS One; 2015; 10(6):e0130821. PubMed ID: 26083032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From sequence mapping to genome assemblies.
    Otto TD
    Methods Mol Biol; 2015; 1201():19-50. PubMed ID: 25388106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bioinformatics tools for the genome assembly and analysis based on third-generation sequencing.
    Wee Y; Bhyan SB; Liu Y; Lu J; Li X; Zhao M
    Brief Funct Genomics; 2019 Feb; 18(1):1-12. PubMed ID: 30462154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. aTRAM - automated target restricted assembly method: a fast method for assembling loci across divergent taxa from next-generation sequencing data.
    Allen JM; Huang DI; Cronk QC; Johnson KP
    BMC Bioinformatics; 2015 Mar; 16(1):98. PubMed ID: 25887972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast inexact mapping using advanced tree exploration on backward search methods.
    Salavert J; Tomás A; Tárraga J; Medina I; Dopazo J; Blanquer I
    BMC Bioinformatics; 2015 Jan; 16():18. PubMed ID: 25626517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GMAP and GSNAP for Genomic Sequence Alignment: Enhancements to Speed, Accuracy, and Functionality.
    Wu TD; Reeder J; Lawrence M; Becker G; Brauer MJ
    Methods Mol Biol; 2016; 1418():283-334. PubMed ID: 27008021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GapPredict - A Language Model for Resolving Gaps in Draft Genome Assemblies.
    Chen E; Chu J; Zhang J; Warren RL; Birol I
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2802-2808. PubMed ID: 34478378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CARE 2.0: reducing false-positive sequencing error corrections using machine learning.
    Kallenborn F; Cascitti J; Schmidt B
    BMC Bioinformatics; 2022 Jun; 23(1):227. PubMed ID: 35698033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerating the Next Generation Long Read Mapping with the FPGA-Based System.
    Chen P; Wang C; Li X; Zhou X
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(5):840-52. PubMed ID: 26356857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strand-seq enables reliable separation of long reads by chromosome via expectation maximization.
    Ghareghani M; Porubskỳ D; Sanders AD; Meiers S; Eichler EE; Korbel JO; Marschall T
    Bioinformatics; 2018 Jul; 34(13):i115-i123. PubMed ID: 29949971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RF: a method for filtering short reads with tandem repeats for genome mapping.
    Misawa K
    Genomics; 2013 Jul; 102(1):35-7. PubMed ID: 23542167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HGA: de novo genome assembly method for bacterial genomes using high coverage short sequencing reads.
    Al-Okaily AA
    BMC Genomics; 2016 Mar; 17():193. PubMed ID: 26945881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.