BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28414616)

  • 1. Biphasic Finite Element Modeling Reconciles Mechanical Properties of Tissue-Engineered Cartilage Constructs Across Testing Platforms.
    Meloni GR; Fisher MB; Stoeckl BD; Dodge GR; Mauck RL
    Tissue Eng Part A; 2017 Jul; 23(13-14):663-674. PubMed ID: 28414616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the constitutive properties of native, tissue engineered, and degenerated articular cartilage.
    Seifzadeh A; Oguamanam DC; Papini M
    Clin Biomech (Bristol, Avon); 2012 Oct; 27(8):852-8. PubMed ID: 22578740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-Infrared Spectroscopy Predicts Compositional and Mechanical Properties of Hyaluronic Acid-Based Engineered Cartilage Constructs.
    Yousefi F; Kim M; Nahri SY; Mauck RL; Pleshko N
    Tissue Eng Part A; 2018 Jan; 24(1-2):106-116. PubMed ID: 28398127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional tissue engineering of chondral and osteochondral constructs.
    Lima EG; Mauck RL; Han SH; Park S; Ng KW; Ateshian GA; Hung CT
    Biorheology; 2004; 41(3-4):577-90. PubMed ID: 15299288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anatomic Mesenchymal Stem Cell-Based Engineered Cartilage Constructs for Biologic Total Joint Replacement.
    Saxena V; Kim M; Keah NM; Neuwirth AL; Stoeckl BD; Bickard K; Restle DJ; Salowe R; Wang MY; Steinberg DR; Mauck RL
    Tissue Eng Part A; 2016 Feb; 22(3-4):386-95. PubMed ID: 26871863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical Testing of Cartilage Constructs.
    Olvera D; Daly A; Kelly DJ
    Methods Mol Biol; 2015; 1340():279-87. PubMed ID: 26445846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of dynamic compression on the development of cartilage grafts engineered using bone marrow and infrapatellar fat pad derived stem cells.
    Luo L; Thorpe SD; Buckley CT; Kelly DJ
    Biomed Mater; 2015 Sep; 10(5):055011. PubMed ID: 26391756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of a degraded core on the mechanical behaviour of tissue-engineered cartilage constructs: a poro-elastic finite element analysis.
    Kelly DJ; Prendergast PJ
    Med Biol Eng Comput; 2004 Jan; 42(1):9-13. PubMed ID: 14977217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncertainties in indentation testing of articular cartilage: a fibril-reinforced poroviscoelastic study.
    Julkunen P; Korhonen RK; Herzog W; Jurvelin JS
    Med Eng Phys; 2008 May; 30(4):506-15. PubMed ID: 17629536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sliding indentation enhances collagen content and depth-dependent matrix distribution in tissue-engineered cartilage constructs.
    Kock LM; Ito K; van Donkelaar CC
    Tissue Eng Part A; 2013 Sep; 19(17-18):1949-59. PubMed ID: 23544967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of repair tissue maturation on the response to oscillatory compression in a cartilage defect repair model.
    Hunter CJ; Levenston ME
    Biorheology; 2002; 39(1-2):79-88. PubMed ID: 12082270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanics of hyaluronic acid/adipic acid dihydrazide hydrogel: towards developing a vessel for delivery of preadipocytes to native tissues.
    Shoham N; Sasson AL; Lin FH; Benayahu D; Haj-Ali R; Gefen A
    J Mech Behav Biomed Mater; 2013 Dec; 28():320-31. PubMed ID: 24021174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical stimulation to stimulate formation of a physiological collagen architecture in tissue-engineered cartilage: a numerical study.
    Khoshgoftar M; van Donkelaar CC; Ito K
    Comput Methods Biomech Biomed Engin; 2011 Feb; 14(2):135-44. PubMed ID: 21337221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of glycosaminoglycan content on the compressive modulus of cartilage engineered in type II collagen scaffolds.
    Pfeiffer E; Vickers SM; Frank E; Grodzinsky AJ; Spector M
    Osteoarthritis Cartilage; 2008 Oct; 16(10):1237-44. PubMed ID: 18406634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of polyvinyl alcohol hydrogels as tissue-engineered cartilage scaffolds using a coupled finite element-optimization algorithm.
    Nazouri M; Seifzadeh A; Masaeli E
    J Biomech; 2020 Jan; 99():109525. PubMed ID: 31787260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative assessment of intrinsic mechanical stimuli on knee cartilage and compressed agarose constructs.
    Completo A; Bandeiras C; Fonseca F
    Med Eng Phys; 2017 Jun; 44():87-93. PubMed ID: 28318948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechano-acoustic determination of Young's modulus of articular cartilage.
    Saarakkala S; Korhonen RK; Laasanen MS; Töyräs J; Rieppo J; Jurvelin JS
    Biorheology; 2004; 41(3-4):167-79. PubMed ID: 15299250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time monitoring of force response measured in mechanically stimulated tissue-engineered cartilage.
    Preiss-Bloom O; Mizrahi J; Elisseeff J; Seliktar D
    Artif Organs; 2009 Apr; 33(4):318-27. PubMed ID: 19335408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.