BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 28414772)

  • 21. Carbohydrate-Based Nanocarriers Exhibiting Specific Cell Targeting with Minimum Influence from the Protein Corona.
    Kang B; Okwieka P; Schöttler S; Winzen S; Langhanki J; Mohr K; Opatz T; Mailänder V; Landfester K; Wurm FR
    Angew Chem Int Ed Engl; 2015 Jun; 54(25):7436-40. PubMed ID: 25940402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoparticle-protein complexes mimicking corona formation in ocular environment.
    Jo DH; Kim JH; Son JG; Dan KS; Song SH; Lee TG; Kim JH
    Biomaterials; 2016 Dec; 109():23-31. PubMed ID: 27648757
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition.
    Raesch SS; Tenzer S; Storck W; Rurainski A; Selzer D; Ruge CA; Perez-Gil J; Schaefer UF; Lehr CM
    ACS Nano; 2015 Dec; 9(12):11872-85. PubMed ID: 26575243
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterizing the protein corona of sub-10 nm nanoparticles.
    Glancy D; Zhang Y; Wu JLY; Ouyang B; Ohta S; Chan WCW
    J Control Release; 2019 Jun; 304():102-110. PubMed ID: 31004667
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of nanoparticle biomolecule complexes.
    Gunnarsson SB; Bernfur K; Mikkelsen A; Cedervall T
    Nanoscale; 2018 Mar; 10(9):4246-4257. PubMed ID: 29436548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface roughness influences the protein corona formation of glycosylated nanoparticles and alter their cellular uptake.
    Piloni A; Wong CK; Chen F; Lord M; Walther A; Stenzel MH
    Nanoscale; 2019 Dec; 11(48):23259-23267. PubMed ID: 31782458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential clinical applications of the personalized, disease-specific protein corona on nanoparticles.
    García Vence M; Chantada-Vázquez MDP; Vázquez-Estévez S; Manuel Cameselle-Teijeiro J; Bravo SB; Núñez C
    Clin Chim Acta; 2020 Feb; 501():102-111. PubMed ID: 31678275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time-evolution of in vivo protein corona onto blood-circulating PEGylated liposomal doxorubicin (DOXIL) nanoparticles.
    Hadjidemetriou M; Al-Ahmady Z; Kostarelos K
    Nanoscale; 2016 Apr; 8(13):6948-57. PubMed ID: 26961355
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single particle extinction and scattering optical method unveils in real time the influence of the blood components on polymeric nanoparticles.
    Sanvito T; Bigini P; Cavanna MV; Fiordaliso F; Violatto MB; Talamini L; Salmona M; Milani P; Potenza MAC
    Nanomedicine; 2017 Nov; 13(8):2597-2603. PubMed ID: 28756089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoparticles Penetrate into the Multicellular Spheroid-on-Chip: Effect of Surface Charge, Protein Corona, and Exterior Flow.
    Huang K; Boerhan R; Liu C; Jiang G
    Mol Pharm; 2017 Dec; 14(12):4618-4627. PubMed ID: 29096441
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clusterin in the protein corona plays a key role in the stealth effect of nanoparticles against phagocytes.
    Aoyama M; Hata K; Higashisaka K; Nagano K; Yoshioka Y; Tsutsumi Y
    Biochem Biophys Res Commun; 2016 Nov; 480(4):690-695. PubMed ID: 27983983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction of gold and silver nanoparticles with human plasma: Analysis of protein corona reveals specific binding patterns.
    Lai W; Wang Q; Li L; Hu Z; Chen J; Fang Q
    Colloids Surf B Biointerfaces; 2017 Apr; 152():317-325. PubMed ID: 28131092
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasma protein adsorption and biological identity of systemically administered nanoparticles.
    Chen D; Ganesh S; Wang W; Amiji M
    Nanomedicine (Lond); 2017 Sep; 12(17):2113-2135. PubMed ID: 28805542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature, concentration, and surface modification influence the cellular uptake and the protein corona of polystyrene nanoparticles.
    Oberländer J; Champanhac C; da Costa Marques R; Landfester K; Mailänder V
    Acta Biomater; 2022 Aug; 148():271-278. PubMed ID: 35732233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interplay between nanomedicine and protein corona.
    Yang M; Wu E; Tang W; Qian J; Zhan C
    J Mater Chem B; 2021 Sep; 9(34):6713-6727. PubMed ID: 34328485
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of the influence of protein corona composition on gold nanoparticle bioactivity using machine learning approaches.
    Papa E; Doucet JP; Sangion A; Doucet-Panaye A
    SAR QSAR Environ Res; 2016 Jul; 27(7):521-38. PubMed ID: 27329717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monitoring of the Enzymatic Degradation of Protein Corona and Evaluating the Accompanying Cytotoxicity of Nanoparticles.
    Ma Z; Bai J; Jiang X
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):17614-22. PubMed ID: 26200209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Serum heat inactivation affects protein corona composition and nanoparticle uptake.
    Lesniak A; Campbell A; Monopoli MP; Lynch I; Salvati A; Dawson KA
    Biomaterials; 2010 Dec; 31(36):9511-8. PubMed ID: 21059466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy.
    Shang L; Nienhaus GU
    Acc Chem Res; 2017 Feb; 50(2):387-395. PubMed ID: 28145686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape.
    García-Álvarez R; Hadjidemetriou M; Sánchez-Iglesias A; Liz-Marzán LM; Kostarelos K
    Nanoscale; 2018 Jan; 10(3):1256-1264. PubMed ID: 29292433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.