These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 28414951)

  • 1. Development of a two-photon fluorescent turn-on probe with far-red emission for thiophenols and its bioimaging application in living tissues.
    Shang H; Chen H; Tang Y; Ma Y; Lin W
    Biosens Bioelectron; 2017 Sep; 95():81-86. PubMed ID: 28414951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient two-photon fluorescent probe with red emission for imaging of thiophenols in living cells and tissues.
    Liu HW; Zhang XB; Zhang J; Wang QQ; Hu XX; Wang P; Tan W
    Anal Chem; 2015 Sep; 87(17):8896-903. PubMed ID: 26228351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rhodamine-based fluorescent probe for colorimetric and fluorescence lighting-up determination of toxic thiophenols in environmental water and living cells.
    Wu J; Ye Z; Wu F; Wang H; Zeng L; Bao GM
    Talanta; 2018 May; 181():239-247. PubMed ID: 29426507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared fluorescent probe for detection of thiophenols in water samples and living cells.
    Yu D; Huang F; Ding S; Feng G
    Anal Chem; 2014 Sep; 86(17):8835-41. PubMed ID: 25102423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A colorimetric and turn-on NIR fluorescent probe based on xanthene system for sensitive detection of thiophenol and its application in bioimaging.
    Guo SH; Leng TH; Wang K; Wang CY; Shen YJ; Zhu WH
    Talanta; 2018 Aug; 185():359-364. PubMed ID: 29759212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Synthesis of a Fluorescent Probe with a Large Stokes Shift for Detecting Thiophenols and Its Application in Water Samples and Living Cells.
    Liu H; Guo C; Guo S; Wang L; Shi D
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30669672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A coumarin-based fluorescent probe for selective and sensitive detection of thiophenols and its application.
    Li J; Zhang CF; Yang SH; Yang WC; Yang GF
    Anal Chem; 2014 Mar; 86(6):3037-42. PubMed ID: 24506518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new double-emission fluorescent probe for fast detection of thiophenols in aqueous solution and living cells.
    Lv W; Chen Y; Bian L; Chen X
    Talanta; 2019 May; 197():204-210. PubMed ID: 30771925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A near-infrared fluorescent sensor with large Stokes shift for rapid and highly selective detection of thiophenols in water samples and living cells.
    Zeng R; Gao Q; Cheng F; Yang Y; Zhang P; Chen S; Yang H; Chen J; Long Y
    Anal Bioanal Chem; 2018 Mar; 410(7):2001-2009. PubMed ID: 29362851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring thiophenols in both environmental water samples and bio-samples: A method based on a fluorescent probe with broad pH adaptation.
    Ma J; Chen Y; Xu Y; Wei Y; Meng D; Wang B; Zhang Z
    Ecotoxicol Environ Saf; 2022 Mar; 233():113340. PubMed ID: 35228029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Merocyanine-based turn-on fluorescent probe for the sensitive and selective determination of thiophenols via a pK
    Zhang S; Wang Q; Wu F; Yang J; Cheng T; Yang XF; Li Z; Li H
    Talanta; 2020 Aug; 216():120965. PubMed ID: 32456924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A water-soluble fluorescent probe for the detection of thiophenols in water samples and in cells imaging.
    Yan H; Yue Y; Yin C; Zhang Y; Chao J; Huo F
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117905. PubMed ID: 31865108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel isophorone-based red-emitting/NIR probe for thiophenol and its application in real water sample and vivo.
    Cheng Y; Ma F; Gu X; Liu Z; Zhang X; Xue T; Zheng Y; Qi Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 210():281-288. PubMed ID: 30466034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fast responsive chromogenic and near-infrared fluorescence lighting-up probe for visual detection of toxic thiophenol in environmental water and living cells.
    Wu J; Su D; Qin C; Li W; Rodrigues J; Sheng R; Zeng L
    Talanta; 2019 Aug; 201():111-118. PubMed ID: 31122400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive fluorescent probe based on a novel phenothiazine dye for detection of thiophenols in real water samples and living cells.
    Hou P; Wang J; Fu S; Liu L; Chen S
    Anal Bioanal Chem; 2019 Feb; 411(4):935-942. PubMed ID: 30535528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A ratiometric fluorescent probe for visualization of thiophenol and its applications.
    Shen Y; Dai L; Zhang Y; Zhang X; Zhang C; Liu S; Tang Y; Li H
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 230():118061. PubMed ID: 31958606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A large stokes shift fluorescent probe for sensing of thiophenols based on imidazo[1,5-α]pyridine in both aqueous medium and living cells.
    Chen S; Li H; Hou P
    Anal Chim Acta; 2017 Nov; 993():63-70. PubMed ID: 29078956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly selective and sensitive 1-amino BODIPY-based red fluorescent probe for thiophenols with high off-to-on contrast ratio.
    Shao X; Kang R; Zhang Y; Huang Z; Peng F; Zhang J; Wang Y; Pan F; Zhang W; Zhao W
    Anal Chem; 2015 Jan; 87(1):399-405. PubMed ID: 25490557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ESIPT-based fluorescent enhanced probes prompted by methylated β-cyclodextrin for the detection of thiophenols.
    Peng HY; Zhang G; Sun R; Xu YJ; Ge JF
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 302():123012. PubMed ID: 37329832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel two-photon fluorescent probe with long-wavelength emission for monitoring HClO in living cells and tissues.
    Gong YJ; Lv MK; Zhang ML; Kong ZZ; Mao GJ
    Talanta; 2019 Jan; 192():128-134. PubMed ID: 30348367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.