BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 28414980)

  • 1. Fluorescence and circular dichroism studies on the accessibility of tryptophan residues and unfolding of a jacalin-related α-d-galactose-specific lectin from mulberry (Morus indica).
    Datta D; J Swamy M
    J Photochem Photobiol B; 2017 May; 170():108-117. PubMed ID: 28414980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan environment, secondary structure and thermal unfolding of the galactose-specific seed lectin from Dolichos lablab: fluorescence and circular dichroism spectroscopic studies.
    Sultan NA; Rao RN; Nadimpalli SK; Swamy MJ
    Biochim Biophys Acta; 2006 Jul; 1760(7):1001-8. PubMed ID: 16650937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan exposure and accessibility in the chitooligosaccharide-specific phloem exudate lectin from pumpkin (Cucurbita maxima). A fluorescence study.
    Narahari A; Swamy MJ
    J Photochem Photobiol B; 2009 Oct; 97(1):40-7. PubMed ID: 19700341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of temperature and pH on the structure and stability of tumor-specific lectin jacalin and insights into the location of its tryptophan residues: CD, DSC and fluorescence studies.
    Banerjee S; Naresh M; Swamy MJ
    Int J Biol Macromol; 2024 Mar; 260(Pt 2):129451. PubMed ID: 38232886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physico-chemical characteristics and primary structure of an affinity-purified α-D-galactose-specific, jacalin-related lectin from the latex of mulberry (Morus indica).
    Datta D; Pohlentz G; Schulte M; Kaiser M; Goycoolea FM; Müthing J; Mormann M; Swamy MJ
    Arch Biochem Biophys; 2016 Nov; 609():59-68. PubMed ID: 27664852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence and circular dichroism spectroscopic studies on bovine lactoperoxidase.
    Deva MS; Behere DV
    Biometals; 1999 Sep; 12(3):219-25. PubMed ID: 10581684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation, purification, and physicochemical characterization of a D-galactose-binding lectin from seeds of Erythrina speciosa.
    Konozy EH; Bernardes ES; Rosa C; Faca V; Greene LJ; Ward RJ
    Arch Biochem Biophys; 2003 Feb; 410(2):222-9. PubMed ID: 12573281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steady-state and time-resolved fluorescence studies on Trichosanthes cucumerina seed lectin.
    Kenoth R; Swamy MJ
    J Photochem Photobiol B; 2003 Mar; 69(3):193-201. PubMed ID: 12695033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on recombinant single chain Jacalin lectin reveal reduced affinity for saccharides despite normal folding like native Jacalin.
    Sahasrabuddhe AA; Gaikwad SM; Krishnasastry MV; Khan MI
    Protein Sci; 2004 Dec; 13(12):3264-73. PubMed ID: 15557267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence quenching and time-resolved fluorescence studies on Trichosanthes dioica seed lectin.
    Sultan NA; Swamy MJ
    J Photochem Photobiol B; 2005 Aug; 80(2):93-100. PubMed ID: 16038808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acrylamide quenching of apo- and holo-alpha-lactalbumin in guanidine hydrochloride.
    France RM; Grossman SH
    Biochem Biophys Res Commun; 2000 Mar; 269(3):709-12. PubMed ID: 10720481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cofactor and tryptophan accessibility and unfolding of brain glutamate decarboxylase.
    Rust E; Martin DL; Chen CH
    Arch Biochem Biophys; 2001 Aug; 392(2):333-40. PubMed ID: 11488610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence quenching and time-resolved fluorescence studies on Momordica charantia (bitter gourd) seed lectin.
    Padma P; Komath SS; Swamy MJ
    Biochem Mol Biol Int; 1998 Aug; 45(5):911-22. PubMed ID: 9739456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluoroalcohol-induced stabilization of the alpha-helical intermediates of lentil lectin: implication for non-hierarchical lectin folding.
    Naseem F; Khan RH
    Arch Biochem Biophys; 2004 Nov; 431(2):215-23. PubMed ID: 15488470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbohydrate binding and unfolding of Spatholobus parviflorus lectin: fluorescence and circular dichroism spectroscopic study.
    K G; Joseph A; C S; Haridas M
    Appl Biochem Biotechnol; 2013 Sep; 171(1):80-92. PubMed ID: 23817785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic tryptophan fluorescence of Schizosaccharomyces pombe mitochondrial F1-ATPase. A powerful probe for phosphate and nucleotide interactions.
    Divita G; Di Pietro A; Deléage G; Roux B; Gautheron DC
    Biochemistry; 1991 Apr; 30(13):3256-62. PubMed ID: 1826214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification, some properties of a D-galactose-binding leaf lectin from Erythrina indica and further characterization of seed lectin.
    Konozy EH; Mulay R; Faca V; Ward RJ; Greene LJ; Roque-Barriera MC; Sabharwal S; Bhide SV
    Biochimie; 2002 Oct; 84(10):1035-43. PubMed ID: 12504284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differing structural characteristics of molten globule intermediate of peanut lectin in urea and guanidine-HCl.
    Ghosh G; Mandal DK
    Int J Biol Macromol; 2012 Oct; 51(3):188-95. PubMed ID: 22595796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p53 unfolding detected by CD but not by tryptophan fluorescence.
    Nichols NM; Matthews KS
    Biochem Biophys Res Commun; 2001 Oct; 288(1):111-5. PubMed ID: 11594760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guanidine hydrochloride-induced denaturation of the colicin E1 channel peptide: unfolding of local segments using genetically substituted tryptophan residues.
    Steer BA; Merrill AR
    Biochemistry; 1995 May; 34(21):7225-33. PubMed ID: 7766633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.