BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 28415031)

  • 1. Carotenoid accumulation in durian (Durio zibethinus) fruit is affected by ethylene via modulation of carotenoid pathway gene expression.
    Wisutiamonkul A; Ampomah-Dwamena C; Allan AC; Ketsa S
    Plant Physiol Biochem; 2017 Jun; 115():308-319. PubMed ID: 28415031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of expansin genes in the pulp and the dehiscence zone of ripening durian (Durio zibethinus) fruit.
    Palapol Y; Kunyamee S; Thongkhum M; Ketsa S; Ferguson IB; van Doorn WG
    J Plant Physiol; 2015 Jun; 182():33-9. PubMed ID: 26047070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carotenoids in durian fruit pulp during growth and postharvest ripening.
    Wisutiamonkul A; Promdang S; Ketsa S; van Doorn WG
    Food Chem; 2015 Aug; 180():301-305. PubMed ID: 25766832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit.
    Ampomah-Dwamena C; McGhie T; Wibisono R; Montefiori M; Hellens RP; Allan AC
    J Exp Bot; 2009; 60(13):3765-79. PubMed ID: 19574250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of 1-methylcyclopropene (1-MCP) on expression of ethylene receptor genes in durian pulp during ripening.
    Thongkum M; Imsabai W; Burns P; McAtee PA; Schaffer RJ; Allan AC; Ketsa S
    Plant Physiol Biochem; 2018 Apr; 125():232-238. PubMed ID: 29475089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the differential mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya.
    Shen YH; Yang FY; Lu BG; Zhao WW; Jiang T; Feng L; Chen XJ; Ming R
    BMC Genomics; 2019 Jan; 20(1):49. PubMed ID: 30651061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carotenoid accumulation in Japanese apricot (Prunus mume Siebold & Zucc.): molecular analysis of carotenogenic gene expression and ethylene regulation.
    Kita M; Kato M; Ban Y; Honda C; Yaegaki H; Ikoma Y; Moriguchi T
    J Agric Food Chem; 2007 May; 55(9):3414-20. PubMed ID: 17397180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carotenoid metabolism during bilberry (Vaccinium myrtillus L.) fruit development under different light conditions is regulated by biosynthesis and degradation.
    Karppinen K; Zoratti L; Sarala M; Carvalho E; Hirsimäki J; Mentula H; Martens S; Häggman H; Jaakola L
    BMC Plant Biol; 2016 Apr; 16():95. PubMed ID: 27098458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of carotenoid cleavage oxygenases and identification of ripening-associated DzNCED5a in durian (Durio zibethinus) fruit.
    Tantisuwanichkul K; Sirikantaramas S
    Plant Physiol Biochem; 2024 Jan; 206():108253. PubMed ID: 38086212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis of the Dof gene family in durian reveals fruit ripening-associated and cultivar-dependent Dof transcription factors.
    Khaksar G; Sangchay W; Pinsorn P; Sangpong L; Sirikantaramas S
    Sci Rep; 2019 Aug; 9(1):12109. PubMed ID: 31431665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulation of ZDS in tomato exposes carotenoid- and ABA-specific effects on fruit development and ripening.
    McQuinn RP; Gapper NE; Gray AG; Zhong S; Tohge T; Fei Z; Fernie AR; Giovannoni JJ
    Plant Biotechnol J; 2020 Nov; 18(11):2210-2224. PubMed ID: 32171044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic and transcriptional elucidation of the carotenoid biosynthesis pathway in peel and flesh tissue of loquat fruit during on-tree development.
    Hadjipieri M; Georgiadou EC; Marin A; Diaz-Mula HM; Goulas V; Fotopoulos V; Tomás-Barberán FA; Manganaris GA
    BMC Plant Biol; 2017 Jun; 17(1):102. PubMed ID: 28615062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit.
    Sun L; Yuan B; Zhang M; Wang L; Cui M; Wang Q; Leng P
    J Exp Bot; 2012 May; 63(8):3097-108. PubMed ID: 22345638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive genome-wide analysis of calmodulin-binding transcription activator (CAMTA) in Durio zibethinus and identification of fruit ripening-associated DzCAMTAs.
    Iqbal Z; Iqbal MS; Sangpong L; Khaksar G; Sirikantaramas S; Buaboocha T
    BMC Genomics; 2021 Oct; 22(1):743. PubMed ID: 34649525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A xanthophyll-derived apocarotenoid regulates carotenogenesis in tomato chromoplasts.
    D'Ambrosio C; Stigliani AL; Rambla JL; Frusciante S; Diretto G; Enfissi EMA; Granell A; Fraser PD; Giorio G
    Plant Sci; 2023 Mar; 328():111575. PubMed ID: 36572066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AtPDS overexpression in tomato: exposing unique patterns of carotenoid self-regulation and an alternative strategy for the enhancement of fruit carotenoid content.
    McQuinn RP; Wong B; Giovannoni JJ
    Plant Biotechnol J; 2018 Feb; 16(2):482-494. PubMed ID: 28703352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit.
    Kato M; Ikoma Y; Matsumoto H; Sugiura M; Hyodo H; Yano M
    Plant Physiol; 2004 Feb; 134(2):824-37. PubMed ID: 14739348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato.
    Luo Z; Zhang J; Li J; Yang C; Wang T; Ouyang B; Li H; Giovannoni J; Ye Z
    New Phytol; 2013 Apr; 198(2):442-452. PubMed ID: 23406468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of carotenoid metabolism and ABA biosynthesis during blueberry fruit ripening.
    Li X; Zhang D; Pan X; Kakar KU; Nawaz Z
    Plant Physiol Biochem; 2024 Jan; 206():108232. PubMed ID: 38091932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethylene regulation of carotenoid accumulation and carotenogenic gene expression in colour-contrasted apricot varieties (Prunus armeniaca).
    Marty I; Bureau S; Sarkissian G; Gouble B; Audergon JM; Albagnac G
    J Exp Bot; 2005 Jul; 56(417):1877-86. PubMed ID: 15911563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.