These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28415175)

  • 1. Yielding transitions and grain-size effects in dislocation theory.
    Langer JS
    Phys Rev E; 2017 Mar; 95(3-1):033004. PubMed ID: 28415175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic theory of dislocation-enabled plasticity.
    Langer JS
    Phys Rev E; 2017 Nov; 96(5-1):053005. PubMed ID: 29347808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grain size-dependent crystal plasticity constitutive model for polycrystal materials.
    Moghaddam MG; Achuthan A; Bednarcyk BA; Arnold SM; Pineda EJ
    Mater Sci Eng A Struct Mater; 2017 Aug; Volume 703():521-532. PubMed ID: 32690982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compression deformation of WC: atomistic description of hard ceramic material.
    Feng Q; Song X; Liu X; Liang S; Wang H; Nie Z
    Nanotechnology; 2017 Nov; 28(47):475709. PubMed ID: 29016362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical thermodynamics of strain hardening in polycrystalline solids.
    Langer JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032125. PubMed ID: 26465444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hall-petch law revisited in terms of collective dislocation dynamics.
    Louchet F; Weiss J; Richeton T
    Phys Rev Lett; 2006 Aug; 97(7):075504. PubMed ID: 17026245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revealing the maximum strength in nanotwinned copper.
    Lu L; Chen X; Huang X; Lu K
    Science; 2009 Jan; 323(5914):607-10. PubMed ID: 19179523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-scale machining of polycrystalline coppers - effects of grain size and machining parameters.
    Shi J; Wang Y; Yang X
    Nanoscale Res Lett; 2013 Nov; 8(1):500. PubMed ID: 24267785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studying Grain Boundary Strengthening by Dislocation-Based Strain Gradient Crystal Plasticity Coupled with a Multi-Phase-Field Model.
    Amin W; Ali MA; Vajragupta N; Hartmaier A
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31540092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Hall-Petch effect as a manifestation of the general size effect.
    Li Y; Bushby AJ; Dunstan DJ
    Proc Math Phys Eng Sci; 2016 Jun; 472(2190):20150890. PubMed ID: 27436968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Mechanical Properties and Oxidation Resistance of Zirconium Diboride Ceramics via Grain-Refining and Dislocation Regulation.
    Xu H; Ji W; Guo W; Li Y; Zou J; Wang W; Fu Z
    Adv Sci (Weinh); 2022 Feb; 9(6):e2104532. PubMed ID: 35199495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudo Hall-Petch strength reduction in polycrystalline graphene.
    Song Z; Artyukhov VI; Yakobson BI; Xu Z
    Nano Lett; 2013 Apr; 13(4):1829-33. PubMed ID: 23528068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grain-size-independent plastic flow at ultrahigh pressures and strain rates.
    Park HS; Rudd RE; Cavallo RM; Barton NR; Arsenlis A; Belof JL; Blobaum KJ; El-dasher BS; Florando JN; Huntington CM; Maddox BR; May MJ; Plechaty C; Prisbrey ST; Remington BA; Wallace RJ; Wehrenberg CE; Wilson MJ; Comley AJ; Giraldez E; Nikroo A; Farrell M; Randall G; Gray GT
    Phys Rev Lett; 2015 Feb; 114(6):065502. PubMed ID: 25723227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasticity without dislocations in a polycrystalline intermetallic.
    Luo H; Sheng H; Zhang H; Wang F; Fan J; Du J; Ping Liu J; Szlufarska I
    Nat Commun; 2019 Aug; 10(1):3587. PubMed ID: 31399566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of individual dislocation interaction processes with grain boundaries.
    Kondo S; Mitsuma T; Shibata N; Ikuhara Y
    Sci Adv; 2016 Nov; 2(11):e1501926. PubMed ID: 27847862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain Hardening in an AZ31 Alloy Submitted to Rotary Swaging.
    Trojanová Z; Drozd Z; Halmešová K; Džugan J; Škraban T; Minárik P; Németh G; Lukáč P
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain Amount Dependent Grain Size and Orientation Developments during Hot Compression of a Polycrystalline Nickel Based Superalloy.
    He G; Tan L; Liu F; Huang L; Huang Z; Jiang L
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined Effects of Texture and Grain Size Distribution on the Tensile Behavior of
    Richeton T; Wagner F; Chen C; Toth LS
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29949896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of grain size and temperature on mechanical properties of CoCrNi medium-entropy alloy.
    Zhang C; Han B; Shi M
    J Mol Model; 2023 Mar; 29(4):104. PubMed ID: 36947246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A grain boundary model considering the grain misorientation within a geometrically nonlinear gradient-extended crystal viscoplasticity theory.
    Alipour A; Reese S; Svendsen B; Wulfinghoff S
    Proc Math Phys Eng Sci; 2020 Mar; 476(2235):20190581. PubMed ID: 32269484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.