These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28415241)

  • 1. Emergence of chimeras through induced multistability.
    Ujjwal SR; Punetha N; Prasad A; Ramaswamy R
    Phys Rev E; 2017 Mar; 95(3-1):032203. PubMed ID: 28415241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driving-induced multistability in coupled chaotic oscillators: Symmetries and riddled basins.
    Ujjwal SR; Punetha N; Ramaswamy R; Agrawal M; Prasad A
    Chaos; 2016 Jun; 26(6):063111. PubMed ID: 27368776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled Lorenz oscillators near the Hopf boundary: Multistability, intermingled basins, and quasiriddling.
    Wontchui TT; Effa JY; Fouda HPE; Ujjwal SR; Ramaswamy R
    Phys Rev E; 2017 Dec; 96(6-1):062203. PubMed ID: 29347357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaotic chimera attractors in a triangular network of identical oscillators.
    Lee S; Krischer K
    Phys Rev E; 2023 May; 107(5-1):054205. PubMed ID: 37328989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-flip chimera induced by environmental nonlocal coupling.
    Chandrasekar VK; Gopal R; Senthilkumar DV; Lakshmanan M
    Phys Rev E; 2016 Jul; 94(1-1):012208. PubMed ID: 27575124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of coupled modified Rössler oscillators: The role of nonisochronicity parameter.
    Ramya C; Gopal R; Suresh R; Chandrasekar VK
    Chaos; 2021 May; 31(5):053113. PubMed ID: 34240955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of coherence in a system of globally coupled maps.
    Popovych O; Maistrenko Y; Mosekilde E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026205. PubMed ID: 11497675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaotic transients, riddled basins, and stochastic transitions in coupled periodic logistic maps.
    Bashkirtseva I; Ryashko L
    Chaos; 2021 May; 31(5):053101. PubMed ID: 34240946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplitude death in the absence of time delays in identical coupled oscillators.
    Karnatak R; Ramaswamy R; Prasad A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):035201. PubMed ID: 17930293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chimeralike states in a network of oscillators under attractive and repulsive global coupling.
    Mishra A; Hens C; Bose M; Roy PK; Dana SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062920. PubMed ID: 26764787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermingled attractors in an asymmetrically driven modified Chua oscillator.
    Tanze Wontchui T; Ekonde Sone M; Ujjwal SR; Effa JY; Ekobena Fouda HP; Ramaswamy R
    Chaos; 2022 Jan; 32(1):013106. PubMed ID: 35105121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explosive transitions in coupled Lorenz oscillators.
    Muthanna YA; Jafri HH
    Phys Rev E; 2024 May; 109(5-1):054206. PubMed ID: 38907430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling chimera states in chaotic oscillator ensembles through linear augmentation.
    Khatun AA; Jafri HH; Punetha N
    Phys Rev E; 2021 Apr; 103(4-1):042202. PubMed ID: 34005985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chimera states in coupled Kuramoto oscillators with inertia.
    Olmi S
    Chaos; 2015 Dec; 25(12):123125. PubMed ID: 26723164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase multistability and phase synchronization in an array of locally coupled period-doubling oscillators.
    Shabunin A; Feudel U; Astakhov V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026211. PubMed ID: 19792235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chimeralike states in two distinct groups of identical populations of coupled Stuart-Landau oscillators.
    Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M
    Phys Rev E; 2017 Feb; 95(2-1):022208. PubMed ID: 28297891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling phase multistability in coupled period-doubling oscillators.
    Shabunin AV
    Chaos; 2013 Mar; 23(1):013102. PubMed ID: 23556939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism for intensity-induced chimera states in globally coupled oscillators.
    Chandrasekar VK; Gopal R; Venkatesan A; Lakshmanan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062913. PubMed ID: 25615170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Window of multistability and its control in a simple 3D Hopfield neural network: application to biomedical image encryption.
    Njitacke ZT; Isaac SD; Nestor T; Kengne J
    Neural Comput Appl; 2021; 33(12):6733-6752. PubMed ID: 33169051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics, multistability, and crisis analysis of a sine-circle nontwist map.
    Mugnaine M; Sales MR; Szezech JD; Viana RL
    Phys Rev E; 2022 Sep; 106(3-1):034203. PubMed ID: 36266788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.