These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 28415302)

  • 1. Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media.
    Leclaire S; Parmigiani A; Malaspinas O; Chopard B; Latt J
    Phys Rev E; 2017 Mar; 95(3-1):033306. PubMed ID: 28415302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking drainage front morphology with gaseous diffusion in unsaturated porous media: a lattice Boltzmann study.
    Chau JF; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056304. PubMed ID: 17279990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of immiscible two-phase flow properties in a two-dimensional Berea sandstone using the pore-scale lattice Boltzmann simulation.
    Xu M; Liu H
    Eur Phys J E Soft Matter; 2018 Oct; 41(10):124. PubMed ID: 30324324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice Boltzmann modeling and simulation of liquid jet breakup.
    Saito S; Abe Y; Koyama K
    Phys Rev E; 2017 Jul; 96(1-1):013317. PubMed ID: 29347180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved three-dimensional color-gradient lattice Boltzmann model for immiscible two-phase flows.
    Wen ZX; Li Q; Yu Y; Luo KH
    Phys Rev E; 2019 Aug; 100(2-1):023301. PubMed ID: 31574674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An alternative method to implement contact angle boundary condition and its application in hybrid lattice-Boltzmann finite-difference simulations of two-phase flows with immersed surfaces.
    Huang JJ; Wu J; Huang H
    Eur Phys J E Soft Matter; 2018 Feb; 41(2):17. PubMed ID: 29404782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore-scale characteristics of multiphase flow in heterogeneous porous media using the lattice Boltzmann method.
    Bakhshian S; Hosseini SA; Shokri N
    Sci Rep; 2019 Mar; 9(1):3377. PubMed ID: 30833590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppressing viscous fingering in structured porous media.
    Rabbani HS; Or D; Liu Y; Lai CY; Lu NB; Datta SS; Stone HA; Shokri N
    Proc Natl Acad Sci U S A; 2018 May; 115(19):4833-4838. PubMed ID: 29686067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights on the complex dynamics of two-phase flow in porous media under intermediate-wet conditions.
    Rabbani HS; Joekar-Niasar V; Pak T; Shokri N
    Sci Rep; 2017 Jul; 7(1):4584. PubMed ID: 28676665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Pore Network Modeling of Imbibition in Real Porous Media with Corner Film Flow.
    Zhao J; Zhang G; Wu K; Qin F; Fei L; Derome D; Carmeliet J
    Langmuir; 2024 Apr; 40(14):7364-7374. PubMed ID: 38544367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking continuum-scale state of wetting to pore-scale contact angles in porous media.
    Sun C; McClure JE; Mostaghimi P; Herring AL; Shabaninejad M; Berg S; Armstrong RT
    J Colloid Interface Sci; 2020 Mar; 561():173-180. PubMed ID: 31812863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General velocity, pressure, and initial condition for two-dimensional and three-dimensional lattice Boltzmann simulations.
    Mohammadipour OR; Niazmand H; Succi S
    Phys Rev E; 2017 Mar; 95(3-1):033301. PubMed ID: 28415235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppressing Viscous Fingering in Porous Media with Wetting Gradient.
    Wang X; Yin C; Wang J; Zheng K; Zhang Z; Tian Z; Xiong Y
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lattice Boltzmann simulations of binary fluid flow through porous media.
    Tölke J; Krafczyk M; Schulz M; Rank E
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):535-45. PubMed ID: 16214693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice Boltzmann simulation of immiscible three-phase flows with contact-line dynamics.
    Yu Y; Liang D; Liu H
    Phys Rev E; 2019 Jan; 99(1-1):013308. PubMed ID: 30780284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lattice Boltzmann simulations of supercritical CO2-water drainage displacement in porous media: CO2 saturation and displacement mechanism.
    Yamabe H; Tsuji T; Liang Y; Matsuoka T
    Environ Sci Technol; 2015 Jan; 49(1):537-43. PubMed ID: 25427299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A level set method for determining critical curvatures for drainage and imbibition.
    Prodanović M; Bryant SL
    J Colloid Interface Sci; 2006 Dec; 304(2):442-58. PubMed ID: 17027812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drainage in two-dimensional porous media: from capillary fingering to viscous flow.
    Cottin C; Bodiguel H; Colin A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046315. PubMed ID: 21230398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology.
    Ba Y; Wang N; Liu H; Li Q; He G
    Phys Rev E; 2018 Mar; 97(3-1):033307. PubMed ID: 29776031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.