These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 28415364)
1. Interfacial adsorption in two-dimensional pure and random-bond Potts models. Fytas NG; Theodorakis PE; Malakis A Phys Rev E; 2017 Mar; 95(3-1):032126. PubMed ID: 28415364 [TBL] [Abstract][Full Text] [Related]
2. Monte Carlo study of the interfacial adsorption of the Blume-Capel model. Fytas NG; Mainou A; Theodorakis PE; Malakis A Phys Rev E; 2019 Jan; 99(1-1):012111. PubMed ID: 30780297 [TBL] [Abstract][Full Text] [Related]
3. Magnetic critical behavior of two-dimensional random-bond Potts ferromagnets in confined geometries. Chatelain C; Berche B Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):3853-65. PubMed ID: 11970220 [TBL] [Abstract][Full Text] [Related]
4. Critical dynamics of the two-dimensional random-bond Potts model with nonequilibrium Monte Carlo simulations. Fan S; Zhong F Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011122. PubMed ID: 19257016 [TBL] [Abstract][Full Text] [Related]
5. Finite-size scaling at the first-order quantum transitions of quantum Potts chains. Campostrini M; Nespolo J; Pelissetto A; Vicari E Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052103. PubMed ID: 26066115 [TBL] [Abstract][Full Text] [Related]
6. Dynamic Monte Carlo simulations of the three-dimensional random-bond Potts model. Yin JQ; Zheng B; Trimper S Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036122. PubMed ID: 16241530 [TBL] [Abstract][Full Text] [Related]
7. Monte Carlo study of the triangular Blume-Capel model under bond randomness. Theodorakis PE; Fytas NG Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011140. PubMed ID: 23005401 [TBL] [Abstract][Full Text] [Related]
8. Influence of aperiodic modulations on first-order transitions: numerical study of the two-dimensional Potts model. Girardi D; Branco NS Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061127. PubMed ID: 21797322 [TBL] [Abstract][Full Text] [Related]
9. Long-term ordering kinetics of the two-dimensional q-state Potts model. Ferrero EE; Cannas SA Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031108. PubMed ID: 17930200 [TBL] [Abstract][Full Text] [Related]
10. Backbone exponents of the two-dimensional q-state Potts model: a Monte Carlo investigation. Deng Y; Blöte HW; Nienhuis B Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026114. PubMed ID: 14995527 [TBL] [Abstract][Full Text] [Related]
11. Effects of quenched disorder in the two-dimensional Potts model: a Monte Carlo study. Paredes V R; Valbuena J Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):6275-80. PubMed ID: 11969611 [TBL] [Abstract][Full Text] [Related]
12. Spontaneous edge order and geometric aspects of two-dimensional Potts models. Deng Y; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):035107. PubMed ID: 15524571 [TBL] [Abstract][Full Text] [Related]
13. Universality from disorder in the random-bond Blume-Capel model. Fytas NG; Zierenberg J; Theodorakis PE; Weigel M; Janke W; Malakis A Phys Rev E; 2018 Apr; 97(4-1):040102. PubMed ID: 29758610 [TBL] [Abstract][Full Text] [Related]
14. Numerical evidence of a universal critical behavior of two-dimensional and three-dimensional random quantum clock and Potts models. Anfray V; Chatelain C Phys Rev E; 2023 Jul; 108(1-1):014124. PubMed ID: 37583146 [TBL] [Abstract][Full Text] [Related]
15. Dilute Potts model in two dimensions. Qian X; Deng Y; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056132. PubMed ID: 16383713 [TBL] [Abstract][Full Text] [Related]
16. Microcanonical determination of the interface tension of flat and curved interfaces from Monte Carlo simulations. Tröster A; Binder K J Phys Condens Matter; 2012 Jul; 24(28):284107. PubMed ID: 22738832 [TBL] [Abstract][Full Text] [Related]
17. Reexamination of the long-range Potts model: a multicanonical approach. Reynal S; Diep HT Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026109. PubMed ID: 14995522 [TBL] [Abstract][Full Text] [Related]
18. Softening of first-order transition in three-dimensions by quenched disorder. Chatelain C; Berche B; Janke W; Berche PE Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036120. PubMed ID: 11580407 [TBL] [Abstract][Full Text] [Related]
19. Ashkin-Teller criticality and weak first-order behavior of the phase transition to a fourfold degenerate state in two-dimensional frustrated Ising antiferromagnets. Liu RM; Zhuo WZ; Chen J; Qin MH; Zeng M; Lu XB; Gao XS; Liu JM Phys Rev E; 2017 Jul; 96(1-1):012103. PubMed ID: 29347150 [TBL] [Abstract][Full Text] [Related]
20. Nature of phase transitions in Axelrod-like coupled Potts models in two dimensions. Gandica Y; Chiacchiera S Phys Rev E; 2016 Mar; 93(3):032132. PubMed ID: 27078317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]