These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 28415367)

  • 1. Collective phase reduction of globally coupled noisy dynamical elements.
    Kawamura Y
    Phys Rev E; 2017 Mar; 95(3-1):032225. PubMed ID: 28415367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collective phase description of globally coupled excitable elements.
    Kawamura Y; Nakao H; Kuramoto Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046211. PubMed ID: 22181249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase synchronization between collective rhythms of globally coupled oscillator groups: noisy identical case.
    Kawamura Y; Nakao H; Arai K; Kori H; Kuramoto Y
    Chaos; 2010 Dec; 20(4):043109. PubMed ID: 21198079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noisy FitzHugh-Nagumo model: from single elements to globally coupled networks.
    Acebrón JA; Bulsara AR; Rappel WJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026202. PubMed ID: 14995543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase reduction and synchronization of a network of coupled dynamical elements exhibiting collective oscillations.
    Nakao H; Yasui S; Ota M; Arai K; Kawamura Y
    Chaos; 2018 Apr; 28(4):045103. PubMed ID: 31906627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noise-induced dynamical regimes in a system of globally coupled excitable units.
    Klinshov VV; Kirillov SY; Nekorkin VI; Wolfrum M
    Chaos; 2021 Aug; 31(8):083103. PubMed ID: 34470239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collective phase description of oscillatory convection.
    Kawamura Y; Nakao H
    Chaos; 2013 Dec; 23(4):043129. PubMed ID: 24387568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reentrant transition in coupled noisy oscillators.
    Kobayashi Y; Kori H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012901. PubMed ID: 25679676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise-controlled oscillations and their bifurcations in coupled phase oscillators.
    Zaks MA; Neiman AB; Feistel S; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066206. PubMed ID: 14754296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noise-induced stabilization of collective dynamics.
    Clusella P; Politi A
    Phys Rev E; 2017 Jun; 95(6-1):062221. PubMed ID: 28709323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noise induced complexity: from subthreshold oscillations to spiking in coupled excitable systems.
    Zaks MA; Sailer X; Schimansky-Geier L; Neiman AB
    Chaos; 2005 Jun; 15(2):26117. PubMed ID: 16035919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular cumulant reductions for macroscopic dynamics of oscillator populations with non-Gaussian noise.
    Dolmatova AV; Tyulkina IV; Goldobin DS
    Chaos; 2023 Nov; 33(11):. PubMed ID: 37909899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Onset of synchronization in complex networks of noisy oscillators.
    Sonnenschein B; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051116. PubMed ID: 23004712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase ordering in coupled noisy bistable systems on scale-free networks.
    Atsumi Y; Hata S; Nakao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052806. PubMed ID: 24329317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative dynamics in a class of coupled two-dimensional oscillators.
    Acebrón JA; Rappel WJ; Bulsara AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016210. PubMed ID: 12636588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase synchronization between collective rhythms of globally coupled oscillator groups: noiseless nonidentical case.
    Kawamura Y; Nakao H; Arai K; Kori H; Kuramoto Y
    Chaos; 2010 Dec; 20(4):043110. PubMed ID: 21198080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulse-coupled mixed-mode oscillators: Cluster states and extreme noise sensitivity.
    Karamchandani AJ; Graham JN; Riecke H
    Chaos; 2018 Apr; 28(4):043115. PubMed ID: 31906651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collective synchronization in populations of globally coupled phase oscillators with drifting frequencies.
    Rougemont J; Naef F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011104. PubMed ID: 16486119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaos-nonchaos phase transitions induced by external noise in ensembles of nonlinearly coupled oscillators.
    Shiino M; Yoshida K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026210. PubMed ID: 11308561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling.
    Burić N; Todorović D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066222. PubMed ID: 16241341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.