These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2841542)

  • 1. Quantitative assay of capsaicin-sensitive thiamine monophosphatase and beta-glycerophosphatase activity in rodent spinal cord.
    Bucsics A; Sutter D; Jancsó G; Lembeck F
    J Neurosci Methods; 1988 Jun; 24(2):155-62. PubMed ID: 2841542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiamine monophosphatase: a genuine marker for transganglionic regulation of primary sensory neurons.
    Knyihár-Csillik E; Bezzegh A; Böti S; Csillik B
    J Histochem Cytochem; 1986 Mar; 34(3):363-71. PubMed ID: 3005391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative electron histochemistry of thiamine monophosphatase and substance P in the upper dorsal horn.
    Csillik B; Knyihár-Csillik E; Bezzegh A
    Acta Histochem; 1986; 80(1):125-34. PubMed ID: 2432748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme translocation in the course of regeneration of central primary afferent terminals in the substantia gelatinosa of the adult rodent spinal cord.
    Knyihár-Csillik E; Kreutzberg GW; Csillik B
    J Neurosci Res; 1989 Jan; 22(1):74-82. PubMed ID: 2538640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytochemical restoration in the upper dorsal horn after transganglionic degenerative atrophy: temporospatial and fine structural correlates.
    Knyihár-Csillik E; Török A
    Neuroscience; 1989; 33(1):75-91. PubMed ID: 2557561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the distribution of thiamine monophosphatase, fluoride-resistant acid phosphatase, and substance P in the spinal cord with a personal computer compatible program.
    Szabó BK; Török A; Knyihár-Csillik E; Csillik B
    Acta Histochem; 1989; 87(2):123-9. PubMed ID: 2483294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental alterations in nociceptive threshold, immunoreactive calcitonin gene-related peptide and substance P, and fluoride-resistant acid phosphatase in neonatally capsaicin-treated rats.
    Hammond DL; Ruda MA
    J Comp Neurol; 1991 Oct; 312(3):436-50. PubMed ID: 1721077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcitonin gene-related peptide (CGRP) in capsaicin-sensitive substance P-immunoreactive sensory neurons in animals and man: distribution and release by capsaicin.
    Franco-Cereceda A; Henke H; Lundberg JM; Petermann JB; Hökfelt T; Fischer JA
    Peptides; 1987; 8(2):399-410. PubMed ID: 2438668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphine, capsaicin and K+ release purines from capsaicin-sensitive primary afferent nerve terminals in the spinal cord.
    Sweeney MI; White TD; Sawynok J
    J Pharmacol Exp Ther; 1989 Jan; 248(1):447-54. PubMed ID: 2492344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Oblongata in the spinal trigeminal nucleus of the adult rat (author's transl)].
    Inomata K; Ogawa K
    No To Shinkei; 1981 Oct; 33(10):1037-43. PubMed ID: 6274371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Normal development and the effects of early rhizotomy on spinal systems in the rat.
    Wang SD; Goldberger ME; Murray M
    Brain Res Dev Brain Res; 1991 Dec; 64(1-2):57-69. PubMed ID: 1723936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transganglionic degeneration of capsaicin-sensitive C-fiber primary afferent terminals.
    Jancsó G; Lawson SN
    Neuroscience; 1990; 39(2):501-11. PubMed ID: 2087270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphatases in the substantia gelatinosa and motoneurones: a comparative histochemical study.
    Sanyal S; Rustioni A
    Brain Res; 1974 Aug; 76(1):161-6. PubMed ID: 4367402
    [No Abstract]   [Full Text] [Related]  

  • 14. Acid phosphatase as a selective marker for a class of small sensory ganglion cells in several mammals: spinal cord distribution, histochemical properties, and relation to fluoride-resistant acid phosphatase (FRAP) of rodents.
    Silverman JD; Kruger L
    Somatosens Res; 1988; 5(3):219-46. PubMed ID: 3128853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiorphan increases capsaicin-evoked release of substance P from slices of dorsal spinal cord of guinea pig.
    Geppetti P; Santicioli P; Rubini I; Spillantini MG; Maggi CA; Sicuteri F
    Neurosci Lett; 1989 Aug; 103(1):69-73. PubMed ID: 2476694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic activation of dorsal horn neurons by selective C-fibre excitation with capsaicin in the mouse spinal cord in vitro.
    Urban L; Dray A
    Neuroscience; 1992; 47(3):693-702. PubMed ID: 1584413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Galanin receptor binding sites in adult rat spinal cord respond differentially to neonatal capsaicin, dorsal rhizotomy and peripheral axotomy.
    Kar S; Quirion R
    Eur J Neurosci; 1994 Dec; 6(12):1917-21. PubMed ID: 7704302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nociceptive transmitter release in the dorsal spinal cord by capsaicin-sensitive fibers after noxious gastric stimulation.
    Schicho R; Donnerer J; Liebmann I; Lippe IT
    Brain Res; 2005 Mar; 1039(1-2):108-15. PubMed ID: 15781052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of neonatal capsaicin treatment on thiamine monophosphatase (TMPase) activity in the substantia gelatinosa of the rat spinal cord.
    Inomata K; Nasu F
    Int J Dev Neurosci; 1984; 2(4):307-11. PubMed ID: 24874140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of bradykinin-like immunoreactivity in the rat spinal cord: effects of capsaicin, melittin, dorsal rhizotomy and peripheral axotomy.
    Lopes P; Couture R
    Neuroscience; 1997 May; 78(2):481-97. PubMed ID: 9145804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.