BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 28415420)

  • 1. In-vitro cell adhesion and proliferation of adipose derived stem cell on hydroxyapatite composite surfaces.
    Pulyala P; Singh A; Dias-Netipanyj MF; Cogo SC; Santos LS; Soares P; Gopal V; Suganthan V; Manivasagam G; Popat KC
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1305-1316. PubMed ID: 28415420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.
    Salarian M; Xu WZ; Wang Z; Sham TK; Charpentier PA
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16918-31. PubMed ID: 25184699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of the fracture toughness of hydroxyapatite (HAp) by incorporation of carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and nylon.
    Khanal SP; Mahfuz H; Rondinone AJ; Leventouri T
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():204-210. PubMed ID: 26706523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ syntheses of hydroxyapatite-grafted graphene oxide composites.
    Iacoboni I; Perrozzi F; Macera L; Taglieri G; Ottaviano L; Fioravanti G
    J Biomed Mater Res A; 2019 Sep; 107(9):2026-2039. PubMed ID: 31077552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology, thermal and mechanical properties of poly (ε-caprolactone) biocomposites reinforced with nano-hydroxyapatite decorated graphene.
    Zhou K; Gao R; Jiang S
    J Colloid Interface Sci; 2017 Jun; 496():334-342. PubMed ID: 28237751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of crystalline phases of titania nanotube arrays on adipose derived stem cell adhesion and proliferation.
    Dias-Netipanyj MF; Cowden K; Sopchenski L; Cogo SC; Elifio-Esposito S; Popat KC; Soares P
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109850. PubMed ID: 31349471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube-reinforced hydroxyapatite composite and their interaction with human osteoblast in vitro.
    Khalid P; Hussain MA; Rekha PD; Arun AB
    Hum Exp Toxicol; 2015 May; 34(5):548-56. PubMed ID: 25233896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MWCNTs as reinforcing agent to the hap-gel nanocomposite for artificial bone grafting.
    Yadav SK; Bera T; Saxena PS; Maurya AK; Garbyal RS; Vajtai R; Ramachandrarao P; Srivastava A
    J Biomed Mater Res A; 2010 Jun; 93(3):886-96. PubMed ID: 19705464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological features and mechanical properties of nanofibers scaffolds of polylactic acid modified with hydroxyapatite/CdSe for wound healing applications.
    Donya H; Darwesh R; Ahmed MK
    Int J Biol Macromol; 2021 Sep; 186():897-908. PubMed ID: 34273344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved nanomechanical and in-vitro biocompatibility of graphene oxide-carbon nanotube hydroxyapatite hybrid composites by synergistic effect.
    Jyoti J; Kiran A; Sandhu M; Kumar A; Singh BP; Kumar N
    J Mech Behav Biomed Mater; 2021 May; 117():104376. PubMed ID: 33618240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene oxide/multi-walled carbon nanotubes as nanofeatured scaffolds for the assisted deposition of nanohydroxyapatite: characterization and biological evaluation.
    Rodrigues BV; Leite NC; Cavalcanti Bd; da Silva NS; Marciano FR; Corat EJ; Webster TJ; Lobo AO
    Int J Nanomedicine; 2016; 11():2569-85. PubMed ID: 27358560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility of sol-gel hydroxyapatite-titania composite and bilayer coatings.
    Sidane D; Rammal H; Beljebbar A; Gangloff SC; Chicot D; Velard F; Khireddine H; Montagne A; Kerdjoudj H
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():650-658. PubMed ID: 28024634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering.
    Katti KS; Katti DR; Dash R
    Biomed Mater; 2008 Sep; 3(3):034122. PubMed ID: 18765898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxyapatite/sericin composites: A simple synthesis route under near-physiological conditions of temperature and pH and preliminary study of the effect of sericin on the biomineralization process.
    Veiga A; Castro F; Reis CC; Sousa A; Oliveira AL; Rocha F
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110400. PubMed ID: 31923995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of chitosan-multiwalled carbon nanotubes/hydroxyapatite nanocomposites for bone tissue engineering.
    Chen L; Hu J; Shen X; Tong H
    J Mater Sci Mater Med; 2013 Aug; 24(8):1843-51. PubMed ID: 23712535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-property relationships of iron-hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method.
    Nordin JA; Prajitno DH; Saidin S; Nur H; Hermawan H
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():294-9. PubMed ID: 25842138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic studies of electrophoretically deposited hybrid HAp/CNT coatings on titanium.
    Długoń E; Niemiec W; Frączek-Szczypta A; Jeleń P; Sitarz M; Błażewicz M
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():872-5. PubMed ID: 24997749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites with reinforcement by hydroxyapatite using extrusion processing.
    Öner M; İlhan B
    Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():19-26. PubMed ID: 27157723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-length scale strengthening and cytocompatibility of ultra high molecular weight polyethylene bio-composites by functionalized carbon nanotube and hydroxyapatite reinforcement.
    Nayak C; Kushram P; Zaidi MAA; Singh I; Sen J; Balani K
    J Mech Behav Biomed Mater; 2023 Apr; 140():105694. PubMed ID: 36841125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical and in vitro biological performances of hydroxyapatite-carbon nanotube composite coatings deposited on Ti by aerosol deposition.
    Hahn BD; Lee JM; Park DS; Choi JJ; Ryu J; Yoon WH; Lee BK; Shin DS; Kim HE
    Acta Biomater; 2009 Oct; 5(8):3205-14. PubMed ID: 19446047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.