These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 28415432)
1. Fabrication of dicalcium phosphate dihydrate-coated β-TCP granules and evaluation of their osteoconductivity using experimental rats. Shariff KA; Tsuru K; Ishikawa K Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1411-1419. PubMed ID: 28415432 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of self-setting β-tricalcium phosphate granular cement. Fukuda N; Tsuru K; Mori Y; Ishikawa K J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):800-807. PubMed ID: 28370963 [TBL] [Abstract][Full Text] [Related]
3. Effects of acidic calcium phosphate concentration on setting reaction and tissue response to β-tricalcium phosphate granular cement. Fukuda N; Ishikawa K; Akita K; Kamada K; Kurio N; Mori Y; Miyamoto Y J Biomed Mater Res B Appl Biomater; 2020 Jan; 108(1):22-29. PubMed ID: 30884116 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of self-setting β-TCP granular cement using β-TCP granules and sodium hydrogen sulfate solution. Eddy ; Tsuchiya A; Tsuru K; Ishikawa K J Biomater Appl; 2018 Nov; 33(5):630-636. PubMed ID: 30376757 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of interconnected porous β-tricalcium phosphate (β-TCP) based on a setting reaction of β-TCP granules with HNO Ishikawa K; Putri TS; Tsuchiya A; Tanaka K; Tsuru K J Biomed Mater Res A; 2018 Mar; 106(3):797-804. PubMed ID: 29105999 [TBL] [Abstract][Full Text] [Related]
6. Effect of citric acid on setting reaction and tissue response to β-TCP granular cement. Fukuda N; Tsuru K; Mori Y; Ishikawa K Biomed Mater; 2017 Feb; 12(1):015027. PubMed ID: 28233758 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. Rojbani H; Nyan M; Ohya K; Kasugai S J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941 [TBL] [Abstract][Full Text] [Related]
8. "Fabrication of arbitrarily shaped carbonate apatite foam based on the interlocking process of dicalcium hydrogen phosphate dihydrate". Sugiura Y; Tsuru K; Ishikawa K J Mater Sci Mater Med; 2017 Aug; 28(8):122. PubMed ID: 28689353 [TBL] [Abstract][Full Text] [Related]
9. In vitro and in vivo evaluations on osteogenesis and biodegradability of a β-tricalcium phosphate coated magnesium alloy. Chai H; Guo L; Wang X; Gao X; Liu K; Fu Y; Guan J; Tan L; Yang K J Biomed Mater Res A; 2012 Feb; 100(2):293-304. PubMed ID: 22045631 [TBL] [Abstract][Full Text] [Related]
10. Microstructure, physical properties, and bone regeneration effect of the nano-sized β-tricalcium phosphate granules. Lee DS; Pai Y; Chang S; Kim DH Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():971-6. PubMed ID: 26478393 [TBL] [Abstract][Full Text] [Related]
11. In vivo stability evaluation of Mg substituted low crystallinity ß-tricalcium phosphate granules fabricated through dissolution-precipitation reaction for bone regeneration. Tripathi G; Sugiura Y; Tsuru K; Ishikawa K Biomed Mater; 2018 Aug; 13(6):065002. PubMed ID: 30010092 [TBL] [Abstract][Full Text] [Related]
12. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically. Morimoto S; Anada T; Honda Y; Suzuki O Biomed Mater; 2012 Aug; 7(4):045020. PubMed ID: 22740587 [TBL] [Abstract][Full Text] [Related]
13. Efficacy of Honeycomb TCP-induced Microenvironment on Bone Tissue Regeneration in Craniofacial Area. Watanabe S; Takabatake K; Tsujigiwa H; Watanabe T; Tokuyama E; Ito S; Nagatsuka H; Kimata Y Int J Med Sci; 2016; 13(6):466-76. PubMed ID: 27279797 [TBL] [Abstract][Full Text] [Related]
14. β-TCP/DCPD-PHBV (40%/60%): Biomaterial made from bioceramic and biopolymer for bone regeneration; investigation of intrinsic properties. Monia T J Appl Biomater Funct Mater; 2022; 20():22808000221088950. PubMed ID: 35410508 [TBL] [Abstract][Full Text] [Related]
15. An injectable bone substitute composed of beta-tricalcium phosphate granules, methylcellulose and hyaluronic acid inhibits connective tissue influx into its implantation bed in vivo. Ghanaati S; Barbeck M; Hilbig U; Hoffmann C; Unger RE; Sader RA; Peters F; Kirkpatrick CJ Acta Biomater; 2011 Nov; 7(11):4018-28. PubMed ID: 21784183 [TBL] [Abstract][Full Text] [Related]
16. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Dadsetan M; Guda T; Runge MB; Mijares D; LeGeros RZ; LeGeros JP; Silliman DT; Lu L; Wenke JC; Brown Baer PR; Yaszemski MJ Acta Biomater; 2015 May; 18():9-20. PubMed ID: 25575855 [TBL] [Abstract][Full Text] [Related]
17. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics. Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627 [TBL] [Abstract][Full Text] [Related]
18. Comparative study of biphasic calcium phosphate with beta-tricalcium phosphate in rat cranial defects--A molecular-biological and histological study. Kunert-Keil C; Scholz F; Gedrange T; Gredes T Ann Anat; 2015 May; 199():79-84. PubMed ID: 24439994 [TBL] [Abstract][Full Text] [Related]
19. Dissolution control and cellular responses of calcium phosphate coatings on zirconia porous scaffold. Kim HW; Kim HE; Salih V; Knowles JC J Biomed Mater Res A; 2004 Mar; 68(3):522-30. PubMed ID: 14762932 [TBL] [Abstract][Full Text] [Related]
20. Effect of geometry and microstructure of honeycomb TCP scaffolds on bone regeneration. Takabatake K; Yamachika E; Tsujigiwa H; Takeda Y; Kimura M; Takagi S; Nagatsuka H; Iida S J Biomed Mater Res A; 2014 Sep; 102(9):2952-60. PubMed ID: 24115688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]