These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28415457)

  • 21. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells.
    Zandi M; Mirzadeh H; Mayer C; Urch H; Eslaminejad MB; Bagheri F; Mivehchi H
    J Biomed Mater Res A; 2010 Mar; 92(4):1244-55. PubMed ID: 19322878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D interconnected porous PMMA scaffold integrating with advanced nanostructured CaP-based biomaterials for rapid bone repair and regeneration.
    Elakkiya K; Bargavi P; Balakumar S
    J Mech Behav Biomed Mater; 2023 Nov; 147():106106. PubMed ID: 37708780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical properties and in vitro evaluation of bioactivity and degradation of dexamethasone-releasing poly-D-L-lactide/nano-hydroxyapatite composite scaffolds.
    Chen L; Tang CY; Tsui CP; Chen DZ
    J Mech Behav Biomed Mater; 2013 Jun; 22():41-50. PubMed ID: 23639839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions.
    Tong HW; Wang M; Lu WW
    J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and characterization of collagen-nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications.
    Rodrigues SC; Salgado CL; Sahu A; Garcia MP; Fernandes MH; Monteiro FJ
    J Biomed Mater Res A; 2013 Apr; 101(4):1080-94. PubMed ID: 23008173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.
    Jonnalagadda JB; Rivero IV; Dertien JS
    J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of hydroxyapatite/poly(methyl methacrylate) and calcium silicate/poly(methyl methacrylate) interpenetrating hybrid composites.
    Monvisade P; Siriphannon P; Jermsungnern R; Rattanabodee S
    J Mater Sci Mater Med; 2007 Oct; 18(10):1955-9. PubMed ID: 17554595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering.
    Wei G; Ma PX
    Biomaterials; 2004 Aug; 25(19):4749-57. PubMed ID: 15120521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo.
    Chesnutt BM; Yuan Y; Buddington K; Haggard WO; Bumgardner JD
    Tissue Eng Part A; 2009 Sep; 15(9):2571-9. PubMed ID: 19309240
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction.
    Dorj B; Won JE; Kim JH; Choi SJ; Shin US; Kim HW
    J Biomed Mater Res A; 2013 Jun; 101(6):1670-81. PubMed ID: 23184729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication and characterization of nano-composite scaffold of PLLA/silane modified hydroxyapatite.
    Wang X; Song G; Lou T
    Med Eng Phys; 2010 May; 32(4):391-7. PubMed ID: 20189867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites.
    Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H
    Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facile fabrication of poly(L-lactic acid)-grafted hydroxyapatite/poly(lactic-co-glycolic acid) scaffolds by Pickering high internal phase emulsion templates.
    Hu Y; Gu X; Yang Y; Huang J; Hu M; Chen W; Tong Z; Wang C
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17166-75. PubMed ID: 25243730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro mineralization of MC3T3-E1 osteoblast-like cells on collagen/nano-hydroxyapatite scaffolds coated carbon/carbon composites.
    Cao S; Li H; Li K; Lu J; Zhang L
    J Biomed Mater Res A; 2016 Feb; 104(2):533-43. PubMed ID: 26476098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of chitosan/silk fibroin/hydroxyapatite porous scaffold and its characteristics in comparison to bi-component scaffolds.
    Qi XN; Mou ZL; Zhang J; Zhang ZQ
    J Biomed Mater Res A; 2014 Feb; 102(2):366-72. PubMed ID: 23533149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D interconnected porous biomimetic scaffolds: In vitro cell response.
    Panzavolta S; Torricelli P; Amadori S; Parrilli A; Rubini K; della Bella E; Fini M; Bigi A
    J Biomed Mater Res A; 2013 Dec; 101(12):3560-70. PubMed ID: 23629945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication and characterization of layered chitosan/silk fibroin/nano-hydroxyapatite scaffolds with designed composition and mechanical properties.
    Zhou T; Wu J; Liu J; Luo Y; Wan Y
    Biomed Mater; 2015 Jul; 10(4):045013. PubMed ID: 26225911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphological effects of porous poly-d,l-lactic acid/hydroxyapatite scaffolds produced by supercritical CO2 foaming on their mechanical performance.
    Rouholamin D; van Grunsven W; Reilly GC; Smith PJ
    Proc Inst Mech Eng H; 2016 Aug; 230(8):761-74. PubMed ID: 27226064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.