BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28415484)

  • 1. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration.
    Gutiérrez-Hernández JM; Escobar-García DM; Escalante A; Flores H; González FJ; Gatenholm P; Toriz G
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():445-453. PubMed ID: 28415484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds.
    Park S; Park J; Jo I; Cho SP; Sung D; Ryu S; Park M; Min KA; Kim J; Hong S; Hong BH; Kim BS
    Biomaterials; 2015 Jul; 58():93-102. PubMed ID: 25941786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration.
    Silva E; Vasconcellos LMR; Rodrigues BVM; Dos Santos DM; Campana-Filho SP; Marciano FR; Webster TJ; Lobo AO
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():31-39. PubMed ID: 28183613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Cell Viability and Biocompatibility of Bacterial Cellulose through in Situ Carboxymethylation.
    Zhou D; Sun Y; Bao Z; Liu W; Xian M; Nian R; Xu F
    Macromol Biosci; 2019 May; 19(5):e1800395. PubMed ID: 30721574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2.
    Shi Q; Li Y; Sun J; Zhang H; Chen L; Chen B; Yang H; Wang Z
    Biomaterials; 2012 Oct; 33(28):6644-9. PubMed ID: 22727467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage.
    Svensson A; Nicklasson E; Harrah T; Panilaitis B; Kaplan DL; Brittberg M; Gatenholm P
    Biomaterials; 2005 Feb; 26(4):419-31. PubMed ID: 15275816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial cellulose membrane functionalized with hydroxiapatite and anti-bone morphogenetic protein 2: A promising material for bone regeneration.
    Coelho F; Cavicchioli M; Specian SS; Scarel-Caminaga RM; Penteado LA; Medeiros AI; Ribeiro SJL; Capote TSO
    PLoS One; 2019; 14(8):e0221286. PubMed ID: 31425530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-functionalized MWCNT/hyperbranched polyurethane bionanocomposite for bone regeneration.
    Das B; Chattopadhyay P; Maji S; Upadhyay A; Das Purkayastha M; Mohanta CL; Maity TK; Karak N
    Biomed Mater; 2015 Apr; 10(2):025011. PubMed ID: 25886640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose synthesized by Acetobacter xylinum in the presence of multi-walled carbon nanotubes.
    Yan Z; Chen S; Wang H; Wang B; Wang C; Jiang J
    Carbohydr Res; 2008 Jan; 343(1):73-80. PubMed ID: 18005953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of Hollow Bacterial Cellulose Microspheres Using Microfluidics to Form an Injectable Porous Scaffold for Wound Healing.
    Yu J; Huang TR; Lim ZH; Luo R; Pasula RR; Liao LD; Lim S; Chen CH
    Adv Healthc Mater; 2016 Dec; 5(23):2983-2992. PubMed ID: 27805793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavior of human chondrocytes in engineered porous bacterial cellulose scaffolds.
    Andersson J; Stenhamre H; Bäckdahl H; Gatenholm P
    J Biomed Mater Res A; 2010 Sep; 94(4):1124-32. PubMed ID: 20694979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo.
    Martínez Ávila H; Feldmann EM; Pleumeekers MM; Nimeskern L; Kuo W; de Jong WC; Schwarz S; Müller R; Hendriks J; Rotter N; van Osch GJ; Stok KS; Gatenholm P
    Biomaterials; 2015 Mar; 44():122-33. PubMed ID: 25617132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of reinforced papers using nano bacterial cellulose.
    Tabarsa T; Sheykhnazari S; Ashori A; Mashkour M; Khazaeian A
    Int J Biol Macromol; 2017 Aug; 101():334-340. PubMed ID: 28341173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial cellulose as a support for the growth of retinal pigment epithelium.
    Gonçalves S; Padrão J; Rodrigues IP; Silva JP; Sencadas V; Lanceros-Mendez S; Girão H; Dourado F; Rodrigues LR
    Biomacromolecules; 2015 Apr; 16(4):1341-51. PubMed ID: 25748276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of three-dimensional bacterial cellulose/chitosan scaffolds: Analysis of cell-scaffold interaction for potential application in the diagnosis of ovarian cancer.
    Ul-Islam M; Subhan F; Islam SU; Khan S; Shah N; Manan S; Ullah MW; Yang G
    Int J Biol Macromol; 2019 Sep; 137():1050-1059. PubMed ID: 31295500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MWCNTs-like protection layer formation on bacterial cellulose bundles as a potential material for suspended resonator.
    Yin Tung Lee ; Xing Qiu ; Pun To Yung
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4427-30. PubMed ID: 25570974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vitro and in Vivo Studies of Novel Poly(D,L-lactic acid), Superhydrophilic Carbon Nanotubes, and Nanohydroxyapatite Scaffolds for Bone Regeneration.
    Siqueira IA; Corat MA; Cavalcanti Bd; Ribeiro Neto WA; Martin AA; Bretas RE; Marciano FR; Lobo AO
    ACS Appl Mater Interfaces; 2015 May; 7(18):9385-98. PubMed ID: 25899398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic spiral-cylindrical scaffold based on hybrid chitosan/cellulose/nano-hydroxyapatite membrane for bone regeneration.
    Jiang H; Zuo Y; Zou Q; Wang H; Du J; Li Y; Yang X
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):12036-44. PubMed ID: 24191736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically conductive bacterial cellulose by incorporation of carbon nanotubes.
    Yoon SH; Jin HJ; Kook MC; Pyun YR
    Biomacromolecules; 2006 Apr; 7(4):1280-4. PubMed ID: 16602750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioactive Carbon-Based Hybrid 3D Scaffolds for Osteoblast Growth.
    Taale M; Schütt F; Zheng K; Mishra YK; Boccaccini AR; Adelung R; Selhuber-Unkel C
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43874-43886. PubMed ID: 30395704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.