These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 2841553)
1. The kappa-opioid receptor from human placenta: hydrodynamic characteristics and evidence for its association with a G protein. Porthé G; Francés B; Verrier B; Cros J; Meunier JC Life Sci; 1988; 43(6):559-67. PubMed ID: 2841553 [TBL] [Abstract][Full Text] [Related]
2. Apparent precoupling of kappa- but not mu-opioid receptors with a G protein in the absence of agonist. Frances B; Puget A; Moisand C; Meunier JC Eur J Pharmacol; 1990 Jul; 189(1):1-9. PubMed ID: 2171960 [TBL] [Abstract][Full Text] [Related]
3. Na+ ions and Gpp(NH)p selectively inhibit agonist interactions at mu- and kappa-opioid receptor sites in rabbit and guinea-pig cerebellum membranes. Frances B; Moisand C; Meunier JC Eur J Pharmacol; 1985 Nov; 117(2):223-32. PubMed ID: 2866971 [TBL] [Abstract][Full Text] [Related]
4. Differential regulation of two molecular forms of a mu-opioid receptor type by sodium ions, manganese ions and by guanyl-5'-yl imidodiphosphate. Jauzac P; Frances B; Puget A; Moisand C; Meunier JC J Recept Res; 1986; 6(1):1-25. PubMed ID: 3012080 [TBL] [Abstract][Full Text] [Related]
5. Solubilization and characterization of the kappa-opioid receptor type from guinea-pig cerebellum. Francés B; Moisand C; Meunier JC Eur J Pharmacol; 1988 May; 150(1-2):103-11. PubMed ID: 2841140 [TBL] [Abstract][Full Text] [Related]
6. Multiple opiate binding sites in the central nervous system of the rabbit. Large predominance of a mu subtype in the cerebellum and characterization of a kappa subtype in the thalamus. Meunier JC; Kouakou Y; Puget A; Moisand C Mol Pharmacol; 1983 Jul; 24(1):23-9. PubMed ID: 6306437 [TBL] [Abstract][Full Text] [Related]
7. 5'-Guanylylimidodiphosphate decreases affinity for agonists and apparent molecular size of a frog brain opioid receptor in digitonin solution. Mollereau C; Pascaud A; Baillat G; Mazarguil H; Puget A; Meunier JC J Biol Chem; 1988 Dec; 263(34):18003-8. PubMed ID: 2848020 [TBL] [Abstract][Full Text] [Related]
8. Characterization of high affinity opioid binding sites in rat periaqueductal gray P2 membrane. Fedynyshyn JP; Kwiat G; Lee NM Eur J Pharmacol; 1989 Jan; 159(1):83-8. PubMed ID: 2540013 [TBL] [Abstract][Full Text] [Related]
9. Evidence for mu-, delta-, and kappa-opioid receptors in a human neuroblastoma cell line. Baumhaker Y; Wollman Y; Goldstein MN; Sarne Y Life Sci; 1993; 52(19):PL205-10. PubMed ID: 8387137 [TBL] [Abstract][Full Text] [Related]
10. Characterization of opioid receptors on smooth muscle cells from guinea pig stomach. Zhang L; Gu ZF; Pradhan T; Jensen RT; Maton PN Am J Physiol; 1992 Mar; 262(3 Pt 1):G461-9. PubMed ID: 1312793 [TBL] [Abstract][Full Text] [Related]
11. Guanine nucleotide regulation of [125I]beta-endorphin binding to NG108-15 and SK-N-SH cell membranes: specific cation requirements. Selley DE; Bidlack JM Brain Res; 1989 Jul; 493(1):23-32. PubMed ID: 2550106 [TBL] [Abstract][Full Text] [Related]
12. Different subtypes of opioid receptors have different affinities for G-proteins. Polastron J; Jauzac P Cell Mol Biol (Noisy-le-grand); 1994 May; 40(3):389-401. PubMed ID: 7920183 [TBL] [Abstract][Full Text] [Related]
13. Sodium regulation of agonist binding at opioid receptors. II. Effects of sodium replacement on opioid binding in guinea pig cortical membranes. Werling LL; Brown SR; Puttfarcken P; Cox BM Mol Pharmacol; 1986 Aug; 30(2):90-5. PubMed ID: 3016504 [TBL] [Abstract][Full Text] [Related]
14. Expression of mu-, delta- and kappa-opioid receptors in baculovirus-infected insect cells. Obermeier H; Wehmeyer A; Schulz R Eur J Pharmacol; 1996 Dec; 318(1):161-6. PubMed ID: 9007528 [TBL] [Abstract][Full Text] [Related]
15. Characterization of opioid receptors in the Mongolian gerbil cerebellum. Niwa M; Iwai T; Luay AE; Nozaki M; Tsurumi K Life Sci; 1994; 55(16):1277-83. PubMed ID: 7934629 [TBL] [Abstract][Full Text] [Related]
16. Differential regulation of the mu-, delta-, and kappa-opiate receptor subtypes by guanyl nucleotides and metal ions. Pfeiffer A; Sadée W; Herz A J Neurosci; 1982 Jul; 2(7):912-7. PubMed ID: 6284888 [TBL] [Abstract][Full Text] [Related]
17. Opioid binding sites in the guinea pig and rat kidney: radioligand homogenate binding and autoradiography. Dissanayake VU; Hughes J; Hunter JC Mol Pharmacol; 1991 Jul; 40(1):93-100. PubMed ID: 1649966 [TBL] [Abstract][Full Text] [Related]
18. Effects of chronic morphine exposure on opioid inhibition of adenylyl cyclase in 7315c cell membranes: a useful model for the study of tolerance at mu opioid receptors. Puttfarcken PS; Werling LL; Cox BM Mol Pharmacol; 1988 May; 33(5):520-7. PubMed ID: 2835651 [TBL] [Abstract][Full Text] [Related]
19. Solubilization of high-affinity, guanine nucleotide-sensitive mu-opioid receptors from rat brain membranes. Weems HB; Chalecka-Franaszek E; Côté TE J Neurochem; 1996 Mar; 66(3):1042-50. PubMed ID: 8769865 [TBL] [Abstract][Full Text] [Related]
20. A human neuroblastoma cell line expresses mu and delta opioid receptor sites. Yu VC; Richards ML; Sadée W J Biol Chem; 1986 Jan; 261(3):1065-70. PubMed ID: 3003051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]