These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 28416416)

  • 1. Flow Function of Pharmaceutical Powders Is Predominantly Governed by Cohesion, Not by Friction Coefficients.
    Leung LY; Mao C; Srivastava I; Du P; Yang CY
    J Pharm Sci; 2017 Jul; 106(7):1865-1873. PubMed ID: 28416416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of flow and bulk density of pharmaceutical powders using surface modification.
    Jallo LJ; Ghoroi C; Gurumurthy L; Patel U; Davé RN
    Int J Pharm; 2012 Feb; 423(2):213-25. PubMed ID: 22197769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow characterization of a pharmaceutical excipient using the shear cell method.
    Salústio PJ; Inácio C; Nunes T; Sousa E Silva JP; Costa PC
    Pharm Dev Technol; 2020 Feb; 25(2):237-244. PubMed ID: 31718375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Pharmaceutical Powder Flowability using Shear Cell-Based Methods and Application of Jenike's Methodology.
    Jager PD; Bramante T; Luner PE
    J Pharm Sci; 2015 Nov; 104(11):3804-3813. PubMed ID: 26220285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating.
    Huang Z; Scicolone JV; Han X; Davé RN
    Int J Pharm; 2015 Jan; 478(2):447-55. PubMed ID: 25475016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of colloidal silica on rheological properties of common pharmaceutical excipients.
    Majerová D; Kulaviak L; Růžička M; Štěpánek F; Zámostný P
    Eur J Pharm Biopharm; 2016 Sep; 106():2-8. PubMed ID: 27163240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative evaluation of powder flow parameters with reference to particle size and shape.
    Goh HP; Heng PWS; Liew CV
    Int J Pharm; 2018 Aug; 547(1-2):133-141. PubMed ID: 29803793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and validation of an annular shear cell for pharmaceutical powder testing.
    Ramachandruni H; Hoag SW
    J Pharm Sci; 2001 May; 90(5):531-40. PubMed ID: 11288098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow Function of Pharmaceutical Powders at Low-Stress Conditions Can Be Inferred Using a Simple Flow-Through-Orifice Device.
    Zhou X; Nauka E; Narang A; Mao C
    J Pharm Sci; 2020 Jun; 109(6):2009-2017. PubMed ID: 32113978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of ring shear testing as a characterization method for powder flow in small-scale powder processing equipment.
    Søgaard SV; Pedersen T; Allesø M; Garnaes J; Rantanen J
    Int J Pharm; 2014 Nov; 475(1-2):315-23. PubMed ID: 25178826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive powder flow characterization with reduced testing.
    Chendo C; Pinto JF; Paisana MC
    Int J Pharm; 2023 Jul; 642():123107. PubMed ID: 37279868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Wall Friction Properties of Pharmaceutical Powders, Blends, and Granulations.
    Hancock BC
    J Pharm Sci; 2019 Jan; 108(1):457-463. PubMed ID: 30359583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of powder flow properties on capsule filling weight uniformity.
    Osorio JG; Muzzio FJ
    Drug Dev Ind Pharm; 2013 Sep; 39(9):1464-75. PubMed ID: 23902366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine powder flow under humid environmental conditions from the perspective of surface energy.
    Karde V; Ghoroi C
    Int J Pharm; 2015 May; 485(1-2):192-201. PubMed ID: 25772418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DEM based computational model to predict moisture induced cohesion in pharmaceutical powders.
    Mukherjee R; Mao C; Chattoraj S; Chaudhuri B
    Int J Pharm; 2018 Jan; 536(1):301-309. PubMed ID: 29217469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered particles demonstrate improved flow properties at elevated drug loadings for direct compression manufacturing.
    Trementozzi AN; Leung CY; Osei-Yeboah F; Irdam E; Lin Y; MacPhee JM; Boulas P; Karki SB; Zawaneh PN
    Int J Pharm; 2017 May; 523(1):133-141. PubMed ID: 28284921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of bulk powder flow performance using comprehensive particle size and particle shape distributions.
    Yu W; Muteki K; Zhang L; Kim G
    J Pharm Sci; 2011 Jan; 100(1):284-93. PubMed ID: 20572055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Starch flow behavior alone and under different glidants action using the shear cell method.
    Salústio PJ; Monteiro MF; Nunes T; Sousa E Silva JP; Costa PJ
    Drug Dev Ind Pharm; 2021 Sep; 47(9):1502-1511. PubMed ID: 34758690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Powder flow in an automated uniaxial tester and an annular shear cell: a study of pharmaceutical excipients and analytical data comparison.
    Kuentz M; Schirg P
    Drug Dev Ind Pharm; 2013 Sep; 39(9):1476-83. PubMed ID: 23043592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the influence of powder flowability, fluidization and de-agglomeration characteristics on the aerosolization of pharmaceutical model powders.
    Zhou QT; Armstrong B; Larson I; Stewart PJ; Morton DA
    Eur J Pharm Sci; 2010 Aug; 40(5):412-21. PubMed ID: 20433919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.