These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 28416566)
1. Structure of the DEAH/RHA ATPase Prp43p bound to RNA implicates a pair of hairpins and motif Va in translocation along RNA. He Y; Staley JP; Andersen GR; Nielsen KH RNA; 2017 Jul; 23(7):1110-1124. PubMed ID: 28416566 [TBL] [Abstract][Full Text] [Related]
2. Prp43p contains a processive helicase structural architecture with a specific regulatory domain. Walbott H; Mouffok S; Capeyrou R; Lebaron S; Humbert O; van Tilbeurgh H; Henry Y; Leulliot N EMBO J; 2010 Jul; 29(13):2194-204. PubMed ID: 20512115 [TBL] [Abstract][Full Text] [Related]
3. The crystal structure of human DEAH-box RNA helicase 15 reveals a domain organization of the mammalian DEAH/RHA family. Murakami K; Nakano K; Shimizu T; Ohto U Acta Crystallogr F Struct Biol Commun; 2017 Jun; 73(Pt 6):347-355. PubMed ID: 28580923 [TBL] [Abstract][Full Text] [Related]
4. Structural basis for RNA translocation by DEAH-box ATPases. Hamann F; Enders M; Ficner R Nucleic Acids Res; 2019 May; 47(8):4349-4362. PubMed ID: 30828714 [TBL] [Abstract][Full Text] [Related]
5. Functional link between DEAH/RHA helicase Prp43 activation and ATP base binding. Robert-Paganin J; Halladjian M; Blaud M; Lebaron S; Delbos L; Chardon F; Capeyrou R; Humbert O; Henry Y; Henras AK; Réty S; Leulliot N Nucleic Acids Res; 2017 Feb; 45(3):1539-1552. PubMed ID: 28180308 [TBL] [Abstract][Full Text] [Related]
6. Structural basis for the function of DEAH helicases. He Y; Andersen GR; Nielsen KH EMBO Rep; 2010 Mar; 11(3):180-6. PubMed ID: 20168331 [TBL] [Abstract][Full Text] [Related]
7. Motif III in superfamily 2 "helicases" helps convert the binding energy of ATP into a high-affinity RNA binding site in the yeast DEAD-box protein Ded1. Banroques J; Doère M; Dreyfus M; Linder P; Tanner NK J Mol Biol; 2010 Mar; 396(4):949-66. PubMed ID: 20026132 [TBL] [Abstract][Full Text] [Related]
8. Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro. Mohr G; Del Campo M; Mohr S; Yang Q; Jia H; Jankowsky E; Lambowitz AM J Mol Biol; 2008 Feb; 375(5):1344-64. PubMed ID: 18096186 [TBL] [Abstract][Full Text] [Related]
9. The DEAH-box RNA helicase Dhr1 contains a remarkable carboxyl terminal domain essential for small ribosomal subunit biogenesis. Roychowdhury A; Joret C; Bourgeois G; Heurgué-Hamard V; Lafontaine DLJ; Graille M Nucleic Acids Res; 2019 Aug; 47(14):7548-7563. PubMed ID: 31188444 [TBL] [Abstract][Full Text] [Related]
10. Molecular mechanism of the RNA helicase DHX37 and its activation by UTP14A in ribosome biogenesis. Boneberg FM; Brandmann T; Kobel L; van den Heuvel J; Bargsten K; Bammert L; Kutay U; Jinek M RNA; 2019 Jun; 25(6):685-701. PubMed ID: 30910870 [TBL] [Abstract][Full Text] [Related]
11. Spliceosome discards intermediates via the DEAH box ATPase Prp43p. Mayas RM; Maita H; Semlow DR; Staley JP Proc Natl Acad Sci U S A; 2010 Jun; 107(22):10020-5. PubMed ID: 20463285 [TBL] [Abstract][Full Text] [Related]
12. Structural analysis reveals the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance. Weir JR; Bonneau F; Hentschel J; Conti E Proc Natl Acad Sci U S A; 2010 Jul; 107(27):12139-44. PubMed ID: 20566885 [TBL] [Abstract][Full Text] [Related]
13. Large-scale ratcheting in a bacterial DEAH/RHA-type RNA helicase that modulates antibiotics susceptibility. Grass LM; Wollenhaupt J; Barthel T; Parfentev I; Urlaub H; Loll B; Klauck E; Antelmann H; Wahl MC Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34290142 [TBL] [Abstract][Full Text] [Related]
14. Function of Auxiliary Domains of the DEAH/RHA Helicase DHX36 in RNA Remodeling. Srinivasan S; Liu Z; Chuenchor W; Xiao TS; Jankowsky E J Mol Biol; 2020 Mar; 432(7):2217-2231. PubMed ID: 32087197 [TBL] [Abstract][Full Text] [Related]
15. High-throughput genetic identification of functionally important regions of the yeast DEAD-box protein Mss116p. Mohr G; Del Campo M; Turner KG; Gilman B; Wolf RZ; Lambowitz AM J Mol Biol; 2011 Nov; 413(5):952-72. PubMed ID: 21945532 [TBL] [Abstract][Full Text] [Related]
16. Structural insights into the interaction of the nuclear exosome helicase Mtr4 with the preribosomal protein Nop53. Falk S; Tants JN; Basquin J; Thoms M; Hurt E; Sattler M; Conti E RNA; 2017 Dec; 23(12):1780-1787. PubMed ID: 28883156 [TBL] [Abstract][Full Text] [Related]
17. Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p. Mallam AL; Del Campo M; Gilman B; Sidote DJ; Lambowitz AM Nature; 2012 Oct; 490(7418):121-5. PubMed ID: 22940866 [TBL] [Abstract][Full Text] [Related]
18. Molecular insights into RNA and DNA helicase evolution from the determinants of specificity for a DEAD-box RNA helicase. Mallam AL; Sidote DJ; Lambowitz AM Elife; 2014 Dec; 3():e04630. PubMed ID: 25497230 [TBL] [Abstract][Full Text] [Related]
19. Mutations in Mtr4 Structural Domains Reveal Their Important Role in Regulating tRNAiMet Turnover in Saccharomyces cerevisiae and Mtr4p Enzymatic Activities In Vitro. Li Y; Burclaff J; Anderson JT PLoS One; 2016; 11(1):e0148090. PubMed ID: 26820724 [TBL] [Abstract][Full Text] [Related]
20. Structural basis for DEAH-helicase activation by G-patch proteins. Studer MK; Ivanović L; Weber ME; Marti S; Jonas S Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7159-7170. PubMed ID: 32179686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]