BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28416642)

  • 1. Estimating the burden of occupational cancer: assessing bias and uncertainty.
    Hutchings S; Rushton L
    Occup Environ Med; 2017 Aug; 74(8):604-611. PubMed ID: 28416642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The burden of cancer at work: estimation as the first step to prevention.
    Rushton L; Hutchings S; Brown T
    Occup Environ Med; 2008 Dec; 65(12):789-800. PubMed ID: 18079154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo sensitivity analysis and Bayesian analysis of smoking as an unmeasured confounder in a study of silica and lung cancer.
    Steenland K; Greenland S
    Am J Epidemiol; 2004 Aug; 160(4):384-92. PubMed ID: 15286024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian modelling of lung cancer risk and bitumen fume exposure adjusted for unmeasured confounding by smoking.
    de Vocht F; Kromhout H; Ferro G; Boffetta P; Burstyn I
    Occup Environ Med; 2009 Aug; 66(8):502-8. PubMed ID: 19060029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occupational exposure to silica and lung cancer: pooled analysis of two case-control studies in Montreal, Canada.
    Vida S; Pintos J; Parent ME; Lavoué J; Siemiatycki J
    Cancer Epidemiol Biomarkers Prev; 2010 Jun; 19(6):1602-11. PubMed ID: 20501770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating reduction in occupational disease burden following reduction in exposure.
    Armstrong BG; Darnton A
    Occup Environ Med; 2008 Sep; 65(9):592-6. PubMed ID: 18096655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk assessment of diesel exhaust and lung cancer: combining human and animal studies after adjustment for biases in epidemiological studies.
    Pedeli X; Hoek G; Katsouyanni K
    Environ Health; 2011 Apr; 10():30. PubMed ID: 21481231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward risk reduction: predicting the future burden of occupational cancer.
    Hutchings S; Rushton L
    Am J Epidemiol; 2011 May; 173(9):1069-77. PubMed ID: 21447477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occupational cancer in Britain. Statistical methodology.
    Hutchings SJ; Rushton L
    Br J Cancer; 2012 Jun; 107 Suppl 1(Suppl 1):S8-17. PubMed ID: 22710683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological and statistical approaches to predicting human lung cancer risk from silica.
    Kuempel ED; Tran CL; Bailer AJ; Porter DW; Hubbs AF; Castranova V
    J Environ Pathol Toxicol Oncol; 2001; 20 Suppl 1():15-32. PubMed ID: 11570671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Update of potency factors for asbestos-related lung cancer and mesothelioma.
    Berman DW; Crump KS
    Crit Rev Toxicol; 2008; 38 Suppl 1():1-47. PubMed ID: 18671157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bias and uncertainty of penetrating photon dose measured by film dosemeters in an epidemiological study of US nuclear workers.
    Daniels RD; Schubauer-Berigan MK
    Radiat Prot Dosimetry; 2005; 113(3):275-89. PubMed ID: 15769802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exposure to occupational carcinogens and lung cancer risk. Evolution of epidemiological estimates of attributable fraction.
    De Matteis S; Consonni D; Bertazzi PA
    Acta Biomed; 2008; 79 Suppl 1():34-42. PubMed ID: 18924308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of exposure in epidemiological studies: the example of silica dust.
    Dahmann D; Taeger D; Kappler M; Büchte S; Morfeld P; Brüning T; Pesch B
    J Expo Sci Environ Epidemiol; 2008 Sep; 18(5):452-61. PubMed ID: 18059424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method to automate probabilistic sensitivity analyses of misclassified binary variables.
    Fox MP; Lash TL; Greenland S
    Int J Epidemiol; 2005 Dec; 34(6):1370-6. PubMed ID: 16172102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncertainty analysis: an example of its application to estimating a survey proportion.
    Jurek AM; Maldonado G; Greenland S; Church TR
    J Epidemiol Community Health; 2007 Jul; 61(7):650-4. PubMed ID: 17568060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating attributable fraction in partially ecologic case-control studies.
    Björk J; Strömberg U
    Epidemiology; 2002 Jul; 13(4):459-66. PubMed ID: 12094102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Monte Carlo maximum likelihood method for estimating uncertainty arising from shared errors in exposures in epidemiological studies of nuclear workers.
    Stayner L; Vrijheid M; Cardis E; Stram DO; Deltour I; Gilbert SJ; Howe G
    Radiat Res; 2007 Dec; 168(6):757-63. PubMed ID: 18088178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lung cancer risk attributable to occupational exposures in a multicenter case-control study in Central and Eastern Europe.
    Olsson AC; Gustavsson P; Zaridze D; Mukeriya A; Szeszenia-Dabrowska N; Rudnai P; Lissowska J; Fabianova E; Mates D; Bencko V; Foretova L; Janout V; Fevotte J; 't Mannetje A; Fletcher T; Brennan P; Boffetta P
    J Occup Environ Med; 2011 Nov; 53(11):1262-7. PubMed ID: 22068130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparse-data bias accompanying overly fine stratification in an analysis of beryllium exposure and lung cancer risk.
    Rothman KJ; Mosquin PL
    Ann Epidemiol; 2013 Feb; 23(2):43-8. PubMed ID: 23219098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.