These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 28416683)

  • 1. Structure and mechanics of aegagropilae fiber network.
    Verhille G; Moulinet S; Vandenberghe N; Adda-Bedia M; Le Gal P
    Proc Natl Acad Sci U S A; 2017 May; 114(18):4607-4612. PubMed ID: 28416683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural sonic crystal absorber constituted of seagrass (Posidonia Oceanica) fibrous spheres.
    Barguet L; Romero-García V; Jiménez N; Garcia-Raffi LM; Sánchez-Morcillo VJ; Groby JP
    Sci Rep; 2021 Jan; 11(1):711. PubMed ID: 33436918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Multifunctional Wet Laid Nonwoven from Marine Waste
    Zannen S; Halimi MT; Hassen MB; Abualsauod EH; Othman AM
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural evolution and stability of non-crosslinked fiber networks with inter-fiber adhesion.
    Picu RC; Sengab A
    Soft Matter; 2018 Mar; 14(12):2254-2266. PubMed ID: 29516073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seagrass Leaves: An Alternative Resource for the Production of Insulation Materials.
    Kuqo A; Mai C
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tensile behavior of non-crosslinked networks of athermal fibers in the presence of entanglements and friction.
    Negi V; Picu RC
    Soft Matter; 2021 Nov; 17(45):10186-10197. PubMed ID: 33030165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topology effects on nonaffine behavior of semiflexible fiber networks.
    Hatami-Marbini H; Shriyan V
    Phys Rev E; 2017 Dec; 96(6-1):062502. PubMed ID: 29347424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Anatomy, Microstructure, and Composition of Natural Fibers on the Performance of Thermal Insulation Panels.
    Ayadi M; Segovia C; Baffoun A; Zouari R; Fierro V; Celzard A; Msahli S; Brosse N
    ACS Omega; 2023 Dec; 8(51):48673-48688. PubMed ID: 38162742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of the mechanical behavior of random fiber networks with different microstructure.
    Hatami-Marbini H
    Eur Phys J E Soft Matter; 2018 May; 41(5):65. PubMed ID: 29796730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecophysiological plasticity of shallow and deep populations of the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa in response to hypersaline stress.
    Sandoval-Gil JM; Ruiz JM; Marín-Guirao L; Bernardeau-Esteller J; Sánchez-Lizaso JL
    Mar Environ Res; 2014 Apr; 95():39-61. PubMed ID: 24411277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of subisostatic random networks composed of nonlinear fibers.
    Hatami-Marbini H; Rohanifar M
    Soft Matter; 2020 Aug; 16(30):7156-7164. PubMed ID: 32671376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of Fiber Flocs with Frictional and Attractive Interfiber Forces.
    Schmid CF; Klingenberg DJ
    J Colloid Interface Sci; 2000 Jun; 226(1):136-144. PubMed ID: 11401357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence of mucous aggregates and their impact on Posidonia oceanica beds.
    Lorenti M; Buia MC; Di Martino V; Modigh M
    Sci Total Environ; 2005 Dec; 353(1-3):369-79. PubMed ID: 16209884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BACI design reveals the decline of the seagrass Posidonia oceanica induced by anchoring.
    Montefalcone M; Chiantore M; Lanzone A; Morri C; Albertelli G; Nike Bianchi C
    Mar Pollut Bull; 2008 Sep; 56(9):1637-45. PubMed ID: 18603267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mathematical model for the determination of forming tissue moduli in needled-nonwoven scaffolds.
    Soares JS; Zhang W; Sacks MS
    Acta Biomater; 2017 Mar; 51():220-236. PubMed ID: 28063987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic diversity and structure in two protected Posidonia oceanica meadows.
    Micheli C; D'Esposito D; Belmonte A; Peirano A; Valiante LM; Procaccini G
    Mar Environ Res; 2015 Aug; 109():124-31. PubMed ID: 26164681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Communities of Cultivable Root Mycobionts of the Seagrass Posidonia oceanica in the Northwest Mediterranean Sea Are Dominated by a Hitherto Undescribed Pleosporalean Dark Septate Endophyte.
    Vohník M; Borovec O; Kolařík M
    Microb Ecol; 2016 Feb; 71(2):442-51. PubMed ID: 26093964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking Seed Photosynthesis and Evolution of the Australian and Mediterranean Seagrass Genus Posidonia.
    Celdran D; Lloret J; Verduin J; van Keulen M; Marín A
    PLoS One; 2015; 10(6):e0130015. PubMed ID: 26066515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of fibrous biomaterials with randomly distributed fiber network structure.
    Jin T; Stanciulescu I
    Biomech Model Mechanobiol; 2016 Aug; 15(4):817-30. PubMed ID: 26342926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the oxidation treatment on the production of cellulose nanofiber suspensions from Posidonia oceanica: The rheological aspect.
    Bettaieb F; Nechyporchuk O; Khiari R; Mhenni MF; Dufresne A; Belgacem MN
    Carbohydr Polym; 2015 Dec; 134():664-72. PubMed ID: 26428170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.