These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 28416696)
1. Zeaxanthin-dependent nonphotochemical quenching does not occur in photosystem I in the higher plant Tian L; Xu P; Chukhutsina VU; Holzwarth AR; Croce R Proc Natl Acad Sci U S A; 2017 May; 114(18):4828-4832. PubMed ID: 28416696 [TBL] [Abstract][Full Text] [Related]
2. Regulation of photosystem I light harvesting by zeaxanthin. Ballottari M; Alcocer MJ; D'Andrea C; Viola D; Ahn TK; Petrozza A; Polli D; Fleming GR; Cerullo G; Bassi R Proc Natl Acad Sci U S A; 2014 Jun; 111(23):E2431-8. PubMed ID: 24872450 [TBL] [Abstract][Full Text] [Related]
3. LHCSR3 is a nonphotochemical quencher of both photosystems in Girolomoni L; Cazzaniga S; Pinnola A; Perozeni F; Ballottari M; Bassi R Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4212-4217. PubMed ID: 30782831 [TBL] [Abstract][Full Text] [Related]
4. Dissecting and modeling zeaxanthin- and lutein-dependent nonphotochemical quenching in Leuenberger M; Morris JM; Chan AM; Leonelli L; Niyogi KK; Fleming GR Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E7009-E7017. PubMed ID: 28652334 [TBL] [Abstract][Full Text] [Related]
5. A novel method produces native light-harvesting complex II aggregates from the photosynthetic membrane revealing their role in nonphotochemical quenching. Shukla MK; Watanabe A; Wilson S; Giovagnetti V; Moustafa EI; Minagawa J; Ruban AV J Biol Chem; 2020 Dec; 295(51):17816-17826. PubMed ID: 33454016 [TBL] [Abstract][Full Text] [Related]
6. Assessment of the impact of photosystem I chlorophyll fluorescence on the pulse-amplitude modulated quenching analysis in leaves of Arabidopsis thaliana. Giovagnetti V; Ware MA; Ruban AV Photosynth Res; 2015 Aug; 125(1-2):179-89. PubMed ID: 25613087 [TBL] [Abstract][Full Text] [Related]
7. Xanthophyll biosynthetic mutants of Arabidopsis thaliana: altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in Photosystem II antenna size and stability. Lokstein H; Tian L; Polle JE; DellaPenna D Biochim Biophys Acta; 2002 Feb; 1553(3):309-19. PubMed ID: 11997140 [TBL] [Abstract][Full Text] [Related]
8. Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots. Sylak-Glassman EJ; Malnoë A; De Re E; Brooks MD; Fischer AL; Niyogi KK; Fleming GR Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17498-503. PubMed ID: 25422428 [TBL] [Abstract][Full Text] [Related]
9. A nonphotochemical-quenching-deficient mutant of Arabidopsis thaliana possessing normal pigment composition and xanthophyll-cycle activity. Peterson RB; Havir EA Planta; 2000 Jan; 210(2):205-14. PubMed ID: 10664126 [TBL] [Abstract][Full Text] [Related]
10. Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Havaux M; Dall'osto L; Bassi R Plant Physiol; 2007 Dec; 145(4):1506-20. PubMed ID: 17932304 [TBL] [Abstract][Full Text] [Related]
11. Drought affects both photosystems in Arabidopsis thaliana. Hu C; Elias E; Nawrocki WJ; Croce R New Phytol; 2023 Oct; 240(2):663-675. PubMed ID: 37530066 [TBL] [Abstract][Full Text] [Related]
12. The zeaxanthin-independent and zeaxanthin-dependent qE components of nonphotochemical quenching involve common conformational changes within the photosystem II antenna in Arabidopsis. Johnson MP; Pérez-Bueno ML; Zia A; Horton P; Ruban AV Plant Physiol; 2009 Feb; 149(2):1061-75. PubMed ID: 19011000 [TBL] [Abstract][Full Text] [Related]
13. Molecular insights into Zeaxanthin-dependent quenching in higher plants. Xu P; Tian L; Kloz M; Croce R Sci Rep; 2015 Sep; 5():13679. PubMed ID: 26323786 [TBL] [Abstract][Full Text] [Related]
14. The effect of zeaxanthin as the only xanthophyll on the structure and function of the photosynthetic apparatus in Arabidopsis thaliana. Havaux M; Dall'Osto L; Cuiné S; Giuliano G; Bassi R J Biol Chem; 2004 Apr; 279(14):13878-88. PubMed ID: 14722117 [TBL] [Abstract][Full Text] [Related]
15. On the relationship between non-photochemical quenching and photoprotection of Photosystem II. Lambrev PH; Miloslavina Y; Jahns P; Holzwarth AR Biochim Biophys Acta; 2012 May; 1817(5):760-9. PubMed ID: 22342615 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a nonphotochemical quenching-deficient Arabidopsis mutant possessing an intact PsbS protein, xanthophyll cycle and lumen acidification. Kalituho L; Grasses T; Graf M; Rech J; Jahns P Planta; 2006 Feb; 223(3):532-41. PubMed ID: 16136330 [TBL] [Abstract][Full Text] [Related]
17. Acclimation- and mutation-induced enhancement of PsbS levels affects the kinetics of non-photochemical quenching in Arabidopsis thaliana. Zia A; Johnson MP; Ruban AV Planta; 2011 Jun; 233(6):1253-64. PubMed ID: 21340700 [TBL] [Abstract][Full Text] [Related]
18. The Arabidopsis szl1 mutant reveals a critical role of β-carotene in photosystem I photoprotection. Cazzaniga S; Li Z; Niyogi KK; Bassi R; Dall'Osto L Plant Physiol; 2012 Aug; 159(4):1745-58. PubMed ID: 23029671 [TBL] [Abstract][Full Text] [Related]
19. Kinetics and heterogeneity of energy transfer from light harvesting complex II to photosystem I in the supercomplex isolated from Arabidopsis. Santabarbara S; Tibiletti T; Remelli W; Caffarri S Phys Chem Chem Phys; 2017 Mar; 19(13):9210-9222. PubMed ID: 28319223 [TBL] [Abstract][Full Text] [Related]
20. Functional analysis of LHCSR1, a protein catalyzing NPQ in mosses, by heterologous expression in Arabidopsis thaliana. Dikaios I; Schiphorst C; Dall'Osto L; Alboresi A; Bassi R; Pinnola A Photosynth Res; 2019 Dec; 142(3):249-264. PubMed ID: 31270669 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]