These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 28416821)

  • 1. Pathogenic variants that alter protein code often disrupt splicing.
    Soemedi R; Cygan KJ; Rhine CL; Wang J; Bulacan C; Yang J; Bayrak-Toydemir P; McDonald J; Fairbrother WG
    Nat Genet; 2017 Jun; 49(6):848-855. PubMed ID: 28416821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hotspot exons are common targets of splicing perturbations.
    Glidden DT; Buerer JL; Saueressig CF; Fairbrother WG
    Nat Commun; 2021 May; 12(1):2756. PubMed ID: 33980843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Future directions for high-throughput splicing assays in precision medicine.
    Rhine CL; Neil C; Glidden DT; Cygan KJ; Fredericks AM; Wang J; Walton NA; Fairbrother WG
    Hum Mutat; 2019 Sep; 40(9):1225-1234. PubMed ID: 31297895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Massively parallel reporter assays discover de novo exonic splicing mutants in paralogs of Autism genes.
    Rhine CL; Neil C; Wang J; Maguire S; Buerer L; Salomon M; Meremikwu IC; Kim J; Strande NT; Fairbrother WG
    PLoS Genet; 2022 Jan; 18(1):e1009884. PubMed ID: 35051175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease.
    Xiong HY; Alipanahi B; Lee LJ; Bretschneider H; Merico D; Yuen RK; Hua Y; Gueroussov S; Najafabadi HS; Hughes TR; Morris Q; Barash Y; Krainer AR; Jojic N; Scherer SW; Blencowe BJ; Frey BJ
    Science; 2015 Jan; 347(6218):1254806. PubMed ID: 25525159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-Binding Proteins: Splicing Factors and Disease.
    Fredericks AM; Cygan KJ; Brown BA; Fairbrother WG
    Biomolecules; 2015 May; 5(2):893-909. PubMed ID: 25985083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SnapShot: Spliceosome Dynamics III.
    Wahl MC; Lührmann R
    Cell; 2015 Jul; 162(3):690-690.e1. PubMed ID: 26232231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Splicing defects caused by exonic mutations in PKD1 as a new mechanism of pathogenesis in autosomal dominant polycystic kidney disease.
    Claverie-Martin F; Gonzalez-Paredes FJ; Ramos-Trujillo E
    RNA Biol; 2015; 12(4):369-74. PubMed ID: 25757501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro iCLIP-based modeling uncovers how the splicing factor U2AF2 relies on regulation by cofactors.
    Sutandy FXR; Ebersberger S; Huang L; Busch A; Bach M; Kang HS; Fallmann J; Maticzka D; Backofen R; Stadler PF; Zarnack K; Sattler M; Legewie S; König J
    Genome Res; 2018 May; 28(5):699-713. PubMed ID: 29643205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre-mRNA splicing in the new millennium.
    Hastings ML; Krainer AR
    Curr Opin Cell Biol; 2001 Jun; 13(3):302-9. PubMed ID: 11343900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extensive in silico analysis of NF1 splicing defects uncovers determinants for splicing outcome upon 5' splice-site disruption.
    Wimmer K; Roca X; Beiglböck H; Callens T; Etzler J; Rao AR; Krainer AR; Fonatsch C; Messiaen L
    Hum Mutat; 2007 Jun; 28(6):599-612. PubMed ID: 17311297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Multiplexed Assay for Exon Recognition Reveals that an Unappreciated Fraction of Rare Genetic Variants Cause Large-Effect Splicing Disruptions.
    Chong R; Insigne KD; Yao D; Burghard CP; Wang J; Hsiao YE; Jones EM; Goodman DB; Xiao X; Kosuri S
    Mol Cell; 2019 Jan; 73(1):183-194.e8. PubMed ID: 30503770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splicing mutations in human genetic disorders: examples, detection, and confirmation.
    Anna A; Monika G
    J Appl Genet; 2018 Aug; 59(3):253-268. PubMed ID: 29680930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of pathogenic gene mutations in
    Ito K; Patel PN; Gorham JM; McDonough B; DePalma SR; Adler EE; Lam L; MacRae CA; Mohiuddin SM; Fatkin D; Seidman CE; Seidman JG
    Proc Natl Acad Sci U S A; 2017 Jul; 114(29):7689-7694. PubMed ID: 28679633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms and Regulation of Alternative Pre-mRNA Splicing.
    Lee Y; Rio DC
    Annu Rev Biochem; 2015; 84():291-323. PubMed ID: 25784052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of disease-associated mutations affecting an exonic splicing enhancer and two cryptic splice sites in exon 13 of the cystic fibrosis transmembrane conductance regulator gene.
    Aznarez I; Chan EM; Zielenski J; Blencowe BJ; Tsui LC
    Hum Mol Genet; 2003 Aug; 12(16):2031-40. PubMed ID: 12913074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pyrimidine-rich exonic splicing suppressor binds multiple RNA splicing factors and inhibits spliceosome assembly.
    Zheng ZM; Huynen M; Baker CC
    Proc Natl Acad Sci U S A; 1998 Nov; 95(24):14088-93. PubMed ID: 9826658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exonic Splicing Mutations Are More Prevalent than Currently Estimated and Can Be Predicted by Using In Silico Tools.
    Soukarieh O; Gaildrat P; Hamieh M; Drouet A; Baert-Desurmont S; Frébourg T; Tosi M; Martins A
    PLoS Genet; 2016 Jan; 12(1):e1005756. PubMed ID: 26761715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SNRP-27, the
    Zahler AM; Rogel LE; Glover ML; Yitiz S; Ragle JM; Katzman S
    RNA; 2018 Oct; 24(10):1314-1325. PubMed ID: 30006499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defective pre-mRNA splicing in PKD1 due to presumed missense and synonymous mutations causing autosomal dominant polycystic disease.
    Gonzalez-Paredes FJ; Ramos-Trujillo E; Claverie-Martin F
    Gene; 2014 Aug; 546(2):243-9. PubMed ID: 24907393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.