These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28417061)

  • 1. Rates of morphological evolution in Captorhinidae: an adaptive radiation of Permian herbivores.
    Brocklehurst N
    PeerJ; 2017; 5():e3200. PubMed ID: 28417061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rates and modes of body size evolution in early carnivores and herbivores: a case study from Captorhinidae.
    Brocklehurst N
    PeerJ; 2016; 4():e1555. PubMed ID: 26793424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrete and continuous character-based disparity analyses converge to the same macroevolutionary signal: a case study from captorhinids.
    Romano M; Brocklehurst N; Fröbisch J
    Sci Rep; 2017 Dec; 7(1):17531. PubMed ID: 29235515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Late to the table: diversification of tetrapod mandibular biomechanics lagged behind the evolution of terrestriality.
    Anderson PS; Friedman M; Ruta M
    Integr Comp Biol; 2013 Aug; 53(2):197-208. PubMed ID: 23526337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of the terrestrial-aquatic transition on disparity and rates of evolution in the carnivoran skull.
    Jones KE; Smaers JB; Goswami A
    BMC Evol Biol; 2015 Feb; 15(1):8. PubMed ID: 25648618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lineage Diversity and Size Disparity in Musteloidea: Testing Patterns of Adaptive Radiation Using Molecular and Fossil-Based Methods.
    Law CJ; Slater GJ; Mehta RS
    Syst Biol; 2018 Jan; 67(1):127-144. PubMed ID: 28472434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Captorhinid reptiles from the lower Permian Pedra de Fogo Formation, Piauí, Brazil: the earliest herbivorous tetrapods in Gondwana.
    Cisneros JC; Angielczyk K; Kammerer CF; Smith RMH; Fröbisch J; Marsicano CA; Richter M
    PeerJ; 2020; 8():e8719. PubMed ID: 32185112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eating down the food chain: generalism is not an evolutionary dead end for herbivores.
    Rojas D; Ramos Pereira MJ; Fonseca C; Dávalos LM
    Ecol Lett; 2018 Mar; 21(3):402-410. PubMed ID: 29341410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of dental occlusion in tetrapods: signal for terrestrial vertebrate evolution?
    Reisz RR
    J Exp Zool B Mol Dev Evol; 2006 May; 306(3):261-77. PubMed ID: 16683226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Herbivory Promotes Dental Disparification and Macroevolutionary Dynamics in Grunters (Teleostei: Terapontidae), a Freshwater Adaptive Radiation.
    Davis AM; Unmack PJ; Vari RP; Betancur-R R
    Am Nat; 2016 Mar; 187(3):320-33. PubMed ID: 26913945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do key innovations unlock diversification? A case-study on the morphological and ecological impact of pharyngognathy in acanthomorph fishes.
    Larouche O; Hodge JR; Alencar LRV; Camper B; Adams DS; Zapfe K; Friedman ST; Wainwright PC; Price SA
    Curr Zool; 2020 Oct; 66(5):575-588. PubMed ID: 33293935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive radiation and the evolution of nectarivory in a large songbird clade.
    Marki PZ; Kennedy JD; Cooney CR; Rahbek C; Fjeldså J
    Evolution; 2019 Jun; 73(6):1226-1240. PubMed ID: 31012491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The oldest caseid synapsid from the Late Pennsylvanian of Kansas, and the evolution of herbivory in terrestrial vertebrates.
    Reisz RR; Fröbisch J
    PLoS One; 2014; 9(4):e94518. PubMed ID: 24739998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rates of phenotypic evolution of ecological characters and sexual traits during the Tanganyikan cichlid adaptive radiation.
    Gonzalez-Voyer A; Kolm N
    J Evol Biol; 2011 Nov; 24(11):2378-88. PubMed ID: 21848985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High extinction rates and non-adaptive radiation explains patterns of low diversity and extreme morphological disparity in North American blister beetles (Coleoptera, Meloidae).
    López-Estrada EK; Sanmartín I; García-París M; Zaldívar-Riverón A
    Mol Phylogenet Evol; 2019 Jan; 130():156-168. PubMed ID: 30273756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple paths to morphological diversification during the origin of amniotes.
    Brocklehurst N; Benson RJ
    Nat Ecol Evol; 2021 Sep; 5(9):1243-1249. PubMed ID: 34312521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mammalian evolution. An arboreal docodont from the Jurassic and mammaliaform ecological diversification.
    Meng QJ; Ji Q; Zhang YG; Liu D; Grossnickle DM; Luo ZX
    Science; 2015 Feb; 347(6223):764-8. PubMed ID: 25678661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic tests for evolutionary innovation: the problematic link between key innovations and exceptional diversification.
    Rabosky DL
    Philos Trans R Soc Lond B Biol Sci; 2017 Dec; 372(1735):. PubMed ID: 29061890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution.
    Hopkins MJ; Smith AB
    Proc Natl Acad Sci U S A; 2015 Mar; 112(12):3758-63. PubMed ID: 25713369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological rates of angiosperm seed size evolution.
    Sims HJ
    Evolution; 2013 May; 67(5):1338-46. PubMed ID: 23617912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.