These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
401 related articles for article (PubMed ID: 28417328)
1. Characterization and pyrolysis of Chlorella vulgaris and Arthrospira platensis: potential of bio-oil and chemical production by Py-GC/MS analysis. Almeida HN; Calixto GQ; Chagas BME; Melo DMA; Resende FM; Melo MAF; Braga RM Environ Sci Pollut Res Int; 2017 Jun; 24(16):14142-14150. PubMed ID: 28417328 [TBL] [Abstract][Full Text] [Related]
2. Pyrolysis-GCMS of Spirulina platensis: Evaluation of biomasses cultivated under autotrophic and mixotrophic conditions. Paula SFA; Chagas BME; Pereira MIB; Rangel AHN; Sassi CFC; Borba LHF; Santos ES; Asevedo EA; Câmara FRA; Araújo RM PLoS One; 2022; 17(10):e0276317. PubMed ID: 36264862 [TBL] [Abstract][Full Text] [Related]
3. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition. Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001 [TBL] [Abstract][Full Text] [Related]
4. Catalytic flash pyrolysis of Scenedesmus sp. post-extraction residue using low-cost HZSM-5 catalyst with the perspective to produce renewable aromatic hydrocarbons. Marques JAO; Alves JLF; de Oliveira GP; Melo DMA; de Melo Viana GAC; Braga RM Environ Sci Pollut Res Int; 2024 Mar; 31(12):18785-18796. PubMed ID: 38349495 [TBL] [Abstract][Full Text] [Related]
5. Formation of nitrogen-containing compounds during microwave pyrolysis of microalgae: Product distribution and reaction pathways. Huang F; Tahmasebi A; Maliutina K; Yu J Bioresour Technol; 2017 Dec; 245(Pt A):1067-1074. PubMed ID: 28946389 [TBL] [Abstract][Full Text] [Related]
6. Pressurized entrained-flow pyrolysis of microalgae: Enhanced production of hydrogen and nitrogen-containing compounds. Maliutina K; Tahmasebi A; Yu J Bioresour Technol; 2018 May; 256():160-169. PubMed ID: 29438916 [TBL] [Abstract][Full Text] [Related]
7. A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass. Wang N; Tahmasebi A; Yu J; Xu J; Huang F; Mamaeva A Bioresour Technol; 2015 Aug; 190():89-96. PubMed ID: 25935388 [TBL] [Abstract][Full Text] [Related]
8. Biomass co-pyrolysis: Effects of blending three different biomasses on oil yield and quality. Hopa DY; Alagöz O; Yılmaz N; Dilek M; Arabacı G; Mutlu T Waste Manag Res; 2019 Sep; 37(9):925-933. PubMed ID: 31319779 [TBL] [Abstract][Full Text] [Related]
9. Microwave-assisted pyrolysis of microalgae for biofuel production. Du Z; Li Y; Wang X; Wan Y; Chen Q; Wang C; Lin X; Liu Y; Chen P; Ruan R Bioresour Technol; 2011 Apr; 102(7):4890-6. PubMed ID: 21316940 [TBL] [Abstract][Full Text] [Related]
10. The transformation of nitrogen during pressurized entrained-flow pyrolysis of Chlorella vulgaris. Maliutina K; Tahmasebi A; Yu J Bioresour Technol; 2018 Aug; 262():90-97. PubMed ID: 29698842 [TBL] [Abstract][Full Text] [Related]
11. Slow pyrolysis of Spirulina platensis for the production of nitrogenous compounds and potential routes for their separation. Rocha KC; Alonso CG; Leal WGO; Schultz EL; Andrade LA; Ostroski IC Bioresour Technol; 2020 Oct; 313():123709. PubMed ID: 32593145 [TBL] [Abstract][Full Text] [Related]
12. Guidance for formulating ingredients/products from Chlorella vulgaris and Arthrospira platensis considering carotenoid and chlorophyll bioaccessibility and cellular uptake. Nass PP; do Nascimento TC; Fernandes AS; Caetano PA; de Rosso VV; Jacob-Lopes E; Zepka LQ Food Res Int; 2022 Jul; 157():111469. PubMed ID: 35761700 [TBL] [Abstract][Full Text] [Related]
13. Exploration of using stripped ammonia and ash from poultry litter for the cultivation of the cyanobacterium Arthrospira platensis and the green microalga Chlorella vulgaris. Markou G; Iconomou D; Sotiroudis T; Israilides C; Muylaert K Bioresour Technol; 2015 Nov; 196():459-68. PubMed ID: 26280098 [TBL] [Abstract][Full Text] [Related]
14. Towards a general kinetic microalgae model: Extending a semi-deterministic green microalgae model for the cyanobacterium Arthrospira platensis and red alga Porphyridium purpureum. Manhaeghe D; Arashiro LT; Van Hulle SWH; Rousseau DPL Bioresour Technol; 2021 Dec; 342():125993. PubMed ID: 34592617 [TBL] [Abstract][Full Text] [Related]
15. Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production. Hong Y; Chen W; Luo X; Pang C; Lester E; Wu T Bioresour Technol; 2017 Aug; 237():47-56. PubMed ID: 28283330 [TBL] [Abstract][Full Text] [Related]
16. Microalgae bio-oil production by pyrolysis and hydrothermal liquefaction: Mechanism and characteristics. Ağbulut Ü; Sirohi R; Lichtfouse E; Chen WH; Len C; Show PL; Le AT; Nguyen XP; Hoang AT Bioresour Technol; 2023 May; 376():128860. PubMed ID: 36907228 [TBL] [Abstract][Full Text] [Related]
17. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Miao X; Wu Q J Biotechnol; 2004 May; 110(1):85-93. PubMed ID: 15099908 [TBL] [Abstract][Full Text] [Related]
18. Microalgae as a raw material for biofuels production. Gouveia L; Oliveira AC J Ind Microbiol Biotechnol; 2009 Feb; 36(2):269-74. PubMed ID: 18982369 [TBL] [Abstract][Full Text] [Related]
19. Fast microwave-assisted pyrolysis of microalgae using microwave absorbent and HZSM-5 catalyst. Borges FC; Xie Q; Min M; Muniz LA; Farenzena M; Trierweiler JO; Chen P; Ruan R Bioresour Technol; 2014 Aug; 166():518-26. PubMed ID: 24951938 [TBL] [Abstract][Full Text] [Related]
20. Thermochemical conversion of microalgal biomass into biofuels: a review. Chen WH; Lin BJ; Huang MY; Chang JS Bioresour Technol; 2015 May; 184():314-327. PubMed ID: 25479688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]