BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 28417364)

  • 1. Affinity Electrophoresis for Analysis of Catalytic Module-Carbohydrate Interactions.
    Cockburn D; Wilkens C; Svensson B
    Methods Mol Biol; 2017; 1588():119-127. PubMed ID: 28417364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Affinity Electrophoresis for Analysis of Catalytic Module-Carbohydrate Interactions.
    Cockburn DW; Wilkens C; Svensson B
    Methods Mol Biol; 2023; 2657():91-101. PubMed ID: 37149524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative approaches to the analysis of carbohydrate-binding module function.
    Abbott DW; Boraston AB
    Methods Enzymol; 2012; 510():211-31. PubMed ID: 22608728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes.
    Cockburn D; Wilkens C; Dilokpimol A; Nakai H; Lewińska A; Abou Hachem M; Svensson B
    PLoS One; 2016; 11(8):e0160112. PubMed ID: 27504624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Affinity electrophoresis as a method for determining substrate-binding specificity of carbohydrate-active enzymes for soluble polysaccharides.
    Moraïs S; Lamed R; Bayer EA
    Methods Mol Biol; 2012; 908():119-27. PubMed ID: 22843395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple method for determining specificity of carbohydrate-binding modules for purified and crude insoluble polysaccharide substrates.
    Yaniv O; Jindou S; Frolow F; Lamed R; Bayer EA
    Methods Mol Biol; 2012; 908():101-7. PubMed ID: 22843393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a novel family of carbohydrate-binding modules with broad ligand specificity.
    Duan CJ; Feng YL; Cao QL; Huang MY; Feng JX
    Sci Rep; 2016 Jan; 6():19392. PubMed ID: 26765840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbohydrate binding modules: Compact yet potent accessories in the specific substrate binding and performance evolution of carbohydrate-active enzymes.
    You Y; Kong H; Li C; Gu Z; Ban X; Li Z
    Biotechnol Adv; 2024; 73():108365. PubMed ID: 38677391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbohydrate-binding domains: multiplicity of biological roles.
    Guillén D; Sánchez S; Rodríguez-Sanoja R
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1241-9. PubMed ID: 19908036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbohydrate-binding modules: fine-tuning polysaccharide recognition.
    Boraston AB; Bolam DN; Gilbert HJ; Davies GJ
    Biochem J; 2004 Sep; 382(Pt 3):769-81. PubMed ID: 15214846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in molecular engineering of carbohydrate-binding modules.
    Armenta S; Moreno-Mendieta S; Sánchez-Cuapio Z; Sánchez S; Rodríguez-Sanoja R
    Proteins; 2017 Sep; 85(9):1602-1617. PubMed ID: 28547780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering the affinity of a family 11 carbohydrate binding module to improve binding of branched over unbranched polysaccharides.
    Furtado GP; Lourenzoni MR; Fuzo CA; Fonseca-Maldonado R; Guazzaroni ME; Ribeiro LF; Ward RJ
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2509-2516. PubMed ID: 30195003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of enzymatic cleavage of cellulose using polysaccharide analysis by carbohydrate gel electrophoresis (PACE).
    Kosik O; Bromley JR; Busse-Wicher M; Zhang Z; Dupree P
    Methods Enzymol; 2012; 510():51-67. PubMed ID: 22608721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning, sequencing, and expression of a Eubacterium cellulosolvens 5 gene encoding an endoglucanase (Cel5A) with novel carbohydrate-binding modules, and properties of Cel5A.
    Yoda K; Toyoda A; Mukoyama Y; Nakamura Y; Minato H
    Appl Environ Microbiol; 2005 Oct; 71(10):5787-93. PubMed ID: 16204489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbohydrate binding modules: biochemical properties and novel applications.
    Shoseyov O; Shani Z; Levy I
    Microbiol Mol Biol Rev; 2006 Jun; 70(2):283-95. PubMed ID: 16760304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules.
    Gilbert HJ; Knox JP; Boraston AB
    Curr Opin Struct Biol; 2013 Oct; 23(5):669-77. PubMed ID: 23769966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbohydrate-binding module assisting glycosynthase-catalysed polymerizations.
    Codera V; Gilbert HJ; Faijes M; Planas A
    Biochem J; 2015 Aug; 470(1):15-22. PubMed ID: 26251443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial cadherin domains as carbohydrate binding modules: determination of affinity constants to insoluble complex polysaccharides.
    Fraiberg M; Borovok I; Weiner RM; Lamed R; Bayer EA
    Methods Mol Biol; 2012; 908():109-18. PubMed ID: 22843394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation.
    Hogg D; Pell G; Dupree P; Goubet F; Martín-Orúe SM; Armand S; Gilbert HJ
    Biochem J; 2003 May; 371(Pt 3):1027-43. PubMed ID: 12523937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutron crystallographic studies reveal hydrogen bond and water-mediated interactions between a carbohydrate-binding module and its bound carbohydrate ligand.
    Fisher SZ; von Schantz L; Håkansson M; Logan DT; Ohlin M
    Biochemistry; 2015 Oct; 54(42):6435-8. PubMed ID: 26451738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.