These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28417597)

  • 1. Ultrahigh-Water-Content, Superelastic, and Shape-Memory Nanofiber-Assembled Hydrogels Exhibiting Pressure-Responsive Conductivity.
    Si Y; Wang L; Wang X; Tang N; Yu J; Ding B
    Adv Mater; 2017 Jun; 29(24):. PubMed ID: 28417597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretchable, tough and elastic nanofibrous hydrogels with dermis-mimicking network structure.
    Lu X; Cao L; Yin X; Si Y; Yu J; Ding B
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):387-395. PubMed ID: 32861043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic, Conductive, and Mechanically Strong Hydrogels from Dual-Cross-Linked Aramid Nanofiber Composites.
    He H; Li Y; Liu H; Kim Y; Yan A; Xu L
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7539-7545. PubMed ID: 33535743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity.
    Si Y; Wang X; Dou L; Yu J; Ding B
    Sci Adv; 2018 Apr; 4(4):eaas8925. PubMed ID: 29719867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality.
    Si Y; Yu J; Tang X; Ge J; Ding B
    Nat Commun; 2014 Dec; 5():5802. PubMed ID: 25512095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions.
    Si Y; Fu Q; Wang X; Zhu J; Yu J; Sun G; Ding B
    ACS Nano; 2015 Apr; 9(4):3791-9. PubMed ID: 25853279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Highly Stretchable Nanofiber-Based Electronic Skin with Pressure-, Strain-, and Flexion-Sensitive Properties for Health and Motion Monitoring.
    Qi K; He J; Wang H; Zhou Y; You X; Nan N; Shao W; Wang L; Ding B; Cui S
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42951-42960. PubMed ID: 28891284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability.
    Zhong W; Liu Q; Wu Y; Wang Y; Qing X; Li M; Liu K; Wang W; Wang D
    Nanoscale; 2016 Jun; 8(24):12105-12. PubMed ID: 27250529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous liquid interface production of alginate/polyacrylamide hydrogels with supramolecular shape memory properties.
    Huang B; Hu R; Xue Z; Zhao J; Li Q; Xia T; Zhang W; Lu C
    Carbohydr Polym; 2020 Mar; 231():115736. PubMed ID: 31888822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional printing of shape memory hydrogels with internal structure for drug delivery.
    Wang Y; Miao Y; Zhang J; Wu JP; Kirk TB; Xu J; Ma D; Xue W
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():44-51. PubMed ID: 29519442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable and Automated Fabrication of Conductive Tough-Hydrogel Microfibers with Ultrastretchability, 3D Printability, and Stress Sensitivity.
    Wei S; Qu G; Luo G; Huang Y; Zhang H; Zhou X; Wang L; Liu Z; Kong T
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11204-11212. PubMed ID: 29504395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembly of Enzyme-Like Nanofibrous G-Molecular Hydrogel for Printed Flexible Electrochemical Sensors.
    Zhong R; Tang Q; Wang S; Zhang H; Zhang F; Xiao M; Man T; Qu X; Li L; Zhang W; Pei H
    Adv Mater; 2018 Mar; 30(12):e1706887. PubMed ID: 29388269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superelastic, Hygroscopic, and Ionic Conducting Cellulose Nanofibril Monoliths by 3D Printing.
    Chen Y; Yu Z; Ye Y; Zhang Y; Li G; Jiang F
    ACS Nano; 2021 Jan; 15(1):1869-1879. PubMed ID: 33448788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofilamentous Virus-Based Dynamic Hydrogels with Tunable Internal Structures, Injectability, Self-Healing, and Sugar Responsiveness at Physiological pH.
    Zhi X; Zheng C; Xiong J; Li J; Zhao C; Shi L; Zhang Z
    Langmuir; 2018 Oct; 34(43):12914-12923. PubMed ID: 30298737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of mechanically strong and tough alginate hydrogels based on a soft-brittle transition.
    Zhao X; Xia Y; Zhang X; Lin X; Wang L
    Int J Biol Macromol; 2019 Oct; 139():850-857. PubMed ID: 31400427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductive Hydrogels as Smart Materials for Flexible Electronic Devices.
    Rong Q; Lei W; Liu M
    Chemistry; 2018 Nov; 24(64):16930-16943. PubMed ID: 29786914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superelastic Carbon Aerogel with Ultrahigh and Wide-Range Linear Sensitivity.
    Hu Y; Zhuo H; Chen Z; Wu K; Luo Q; Liu Q; Jing S; Liu C; Zhong L; Sun R; Peng X
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40641-40650. PubMed ID: 30380296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultralight, Superelastic, and Washable Nanofibrous Sponges with Rigid-Flexible Coupling Architecture Enable Reusable Warmth Retention.
    Wu H; Cai H; Zhang S; Yu J; Ding B
    Nano Lett; 2022 Jan; 22(2):830-837. PubMed ID: 35005975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unidirectional Swelling of Dynamic Cellulose Nanofibril Networks: A Platform for Tunable Hydrogels and Aerogels with 3D Shapeability.
    Benselfelt T; Wågberg L
    Biomacromolecules; 2019 Jun; 20(6):2406-2412. PubMed ID: 31050412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct 3D Printing of Hybrid Nanofiber-Based Nanocomposites for Highly Conductive and Shape Memory Applications.
    Wei H; Cauchy X; Navas IO; Abderrafai Y; Chizari K; Sundararaj U; Liu Y; Leng J; Therriault D
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24523-24532. PubMed ID: 31187627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.