BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28417944)

  • 1. Variable Admittance Control Based on Fuzzy Reinforcement Learning for Minimally Invasive Surgery Manipulator.
    Du Z; Wang W; Yan Z; Dong W; Wang W
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28417944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intelligent Control for Human-Robot Cooperation in Orthopedics Surgery.
    Kuang S; Tang Y; Lin A; Yu S; Sun L
    Adv Exp Med Biol; 2018; 1093():245-262. PubMed ID: 30306486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic virtual fixture on the Euclidean group for admittance-type manipulator in deforming environments.
    Zhang D; Zhu Q; Xiong J; Wang L
    Biomed Eng Online; 2014 Apr; 13():51. PubMed ID: 24767578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of a manipulator robot by neuro-fuzzy subsets form approach control optimized by the genetic algorithms.
    Refoufi S; Benmahammed K
    ISA Trans; 2018 Jun; 77():133-145. PubMed ID: 29661551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
    Wai RJ; Yang ZW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speed-accuracy characteristics of human-machine cooperative manipulation using virtual fixtures with variable admittance.
    Marayong P; Okamura AM
    Hum Factors; 2004; 46(3):518-32. PubMed ID: 15573549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model predictive control for constrained robot manipulator visual servoing tuned by reinforcement learning.
    Li J; Peng X; Li B; Sreeram V; Wu J; Chen Z; Li M
    Math Biosci Eng; 2023 Apr; 20(6):10495-10513. PubMed ID: 37322945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New hybrid adaptive neuro-fuzzy algorithms for manipulator control with uncertainties- comparative study.
    Alavandar S; Nigam MJ
    ISA Trans; 2009 Oct; 48(4):497-502. PubMed ID: 19523623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human-robot skills transfer interfaces for a flexible surgical robot.
    Calinon S; Bruno D; Malekzadeh MS; Nanayakkara T; Caldwell DG
    Comput Methods Programs Biomed; 2014 Sep; 116(2):81-96. PubMed ID: 24491285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compliant-Control-Based Assisted Walking with Mobile Manipulator.
    Li W; Li P; Jin L; Xu R; Guo J; Wang J
    Biomimetics (Basel); 2024 Feb; 9(2):. PubMed ID: 38392150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel hybrid adaptive controller for manipulation in complex perturbation environments.
    Smith AM; Yang C; Ma H; Culverhouse P; Cangelosi A; Burdet E
    PLoS One; 2015; 10(6):e0129281. PubMed ID: 26029916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fuzzy neural network sliding mode controller for vibration suppression in robotically assisted minimally invasive surgery.
    Sang H; Yang C; Liu F; Yun J; Jin G
    Int J Med Robot; 2016 Dec; 12(4):670-679. PubMed ID: 27921372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research on fuzzy proportional-integral-derivative control of master-slave minimally invasive operation robot driver].
    Zhao X; Ren C; Liu H; Li H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Dec; 31(6):1346-9. PubMed ID: 25868257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An image-guided hybrid robot system for dental implant surgery.
    Feng Y; Fan J; Tao B; Wang S; Mo J; Wu Y; Liang Q; Chen X
    Int J Comput Assist Radiol Surg; 2022 Jan; 17(1):15-26. PubMed ID: 34449036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Human Force Scaling via Admittance Control for Physical Human-Robot Interaction.
    Hamad YM; Aydin Y; Basdogan C
    IEEE Trans Haptics; 2021; 14(4):750-761. PubMed ID: 33826517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human-Machine Interaction Methods for Minimally Invasive Surgical Robotic Arms.
    Jiang F; Jia R; Jiang X; Cao F; Lei T; Luo L
    Comput Intell Neurosci; 2022; 2022():9434725. PubMed ID: 36124121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Online Stability in Human-Robot Cooperation with Admittance Control.
    Dimeas F; Aspragathos N
    IEEE Trans Haptics; 2016; 9(2):267-78. PubMed ID: 26780819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variable Admittance Control Based on Human-Robot Collaboration Observer Using Frequency Analysis for Sensitive and Safe Interaction.
    Kim H; Yang W
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural Networks Enhanced Optimal Admittance Control of Robot-Environment Interaction Using Reinforcement Learning.
    Peng G; Chen CLP; Yang C
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4551-4561. PubMed ID: 33651696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a new 3-DOF parallel manipulator for minimally invasive surgery.
    Khalifa A; Fanni M; Mohamed AM; Miyashita T
    Int J Med Robot; 2018 Jun; 14(3):e1901. PubMed ID: 29577580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.