These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28417944)

  • 41. A novel variable-stiffness flexible manipulator actuated by shape memory alloy for minimally invasive surgery.
    Cao Y; Ju F; Zhang L; Bai D; Qi F; Chen B
    Proc Inst Mech Eng H; 2018 Nov; 232(11):1098-1110. PubMed ID: 30269653
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Grey-box modelling and fuzzy logic control of a Leader-Follower robot manipulator system: A hybrid Grey Wolf-Whale Optimisation approach.
    Obadina OO; Thaha MA; Mohamed Z; Shaheed MH
    ISA Trans; 2022 Oct; 129(Pt B):572-593. PubMed ID: 35277266
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Application of Adaptive and Switching Control for Contact Maintenance of a Robotic Vehicle-Manipulator System for Underwater Asset Inspection.
    Cetin K; Zapico CS; Tugal H; Petillot Y; Dunnigan M; Erden MS
    Front Robot AI; 2021; 8():706558. PubMed ID: 34395538
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance.
    Ye C; Yung NC; Wang D
    IEEE Trans Syst Man Cybern B Cybern; 2003; 33(1):17-27. PubMed ID: 18238153
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Haptic virtual surgery simulation system under field programmable analogue array-based hybrid control.
    Ru S; Yang T; Zhang L; Wang L; Fu Y; Tavakoli M
    Sci Rep; 2022 Jul; 12(1):12371. PubMed ID: 35859050
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automatic generation of fuzzy inference systems via unsupervised learning.
    Er MJ; Zhou Y
    Neural Netw; 2008 Dec; 21(10):1556-66. PubMed ID: 18653313
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Method of Human-Like Compliant Assembly Based on Variable Admittance Control for Space Maintenance.
    Cao X; Huang X; Zhao Y; Sun Z; Li H; Jiang Z; Ceccarelli M
    Cyborg Bionic Syst; 2023; 4():0046. PubMed ID: 37681017
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamic model and control for a cable-driven continuum manipulator used for minimally invasive surgery.
    Qi F; Chen B; Gao S; She S
    Int J Med Robot; 2021 Jun; 17(3):e2234. PubMed ID: 33497540
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinematics optimization and static analysis of a modular continuum robot used for minimally invasive surgery.
    Qi F; Ju F; Bai DM; Chen B
    Proc Inst Mech Eng H; 2018 Feb; 232(2):135-148. PubMed ID: 29228866
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A technical challenge for robot-assisted minimally invasive surgery: precision surgery on soft tissue.
    Stallkamp J; Schraft RD
    Int J Med Robot; 2005 Jan; 1(2):48-52. PubMed ID: 17518378
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fuzzy auto-tuning PID control of multiple joint robot driven by ultrasonic motors.
    Sun Z; Xing R; Zhao C; Huang W
    Ultrasonics; 2007 Nov; 46(4):303-12. PubMed ID: 17540429
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cognition-based variable admittance control for active compliance in flexible manipulation of heavy objects with a power-assist robotic system.
    Mizanoor Rahman SM; Ikeura R
    Robotics Biomim; 2018; 5(1):7. PubMed ID: 30524934
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Continuous mode adaptation for cable-driven rehabilitation robot using reinforcement learning.
    Yang R; Zheng J; Song R
    Front Neurorobot; 2022; 16():1068706. PubMed ID: 36620486
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adaptive neuro-fuzzy inference system-based path planning of 5-degrees-of-freedom spatial manipulator for medical applications.
    Narayan J; Singla E; Soni S; Singla A
    Proc Inst Mech Eng H; 2018 Jul; 232(7):726-732. PubMed ID: 29893165
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An Operating Stiffness Controller for the Medical Continuum Robot Based on Impedance Control.
    Duan J; Zhang K; Qian K; Hao J; Zhang Z; Shi C
    Cyborg Bionic Syst; 2024; 5():0110. PubMed ID: 38721039
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A soft multi-module manipulator with variable stiffness for minimally invasive surgery.
    De Falco I; Cianchetti M; Menciassi A
    Bioinspir Biomim; 2017 Sep; 12(5):056008. PubMed ID: 28675144
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigating exploration for deep reinforcement learning of concentric tube robot control.
    Iyengar K; Dwyer G; Stoyanov D
    Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1157-1165. PubMed ID: 32506349
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intrinsically motivated reinforcement learning for human-robot interaction in the real-world.
    Qureshi AH; Nakamura Y; Yoshikawa Y; Ishiguro H
    Neural Netw; 2018 Nov; 107():23-33. PubMed ID: 29631753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.