These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28418054)

  • 1. Addressing uncertainty in atomistic machine learning.
    Peterson AA; Christensen R; Khorshidi A
    Phys Chem Chem Phys; 2017 May; 19(18):10978-10985. PubMed ID: 28418054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acceleration of saddle-point searches with machine learning.
    Peterson AA
    J Chem Phys; 2016 Aug; 145(7):074106. PubMed ID: 27544086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsupervised machine learning in atomistic simulations, between predictions and understanding.
    Ceriotti M
    J Chem Phys; 2019 Apr; 150(15):150901. PubMed ID: 31005087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential for machine learning in hybrid QM/MM calculations.
    Zhang YJ; Khorshidi A; Kastlunger G; Peterson AA
    J Chem Phys; 2018 Jun; 148(24):241740. PubMed ID: 29960374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian machine learning ensemble approach to quantify model uncertainty in predicting groundwater storage change.
    Yin J; Medellín-Azuara J; Escriva-Bou A; Liu Z
    Sci Total Environ; 2021 May; 769():144715. PubMed ID: 33736244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations.
    Jinnouchi R; Miwa K; Karsai F; Kresse G; Asahi R
    J Phys Chem Lett; 2020 Sep; 11(17):6946-6955. PubMed ID: 32787192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perspective: Machine learning potentials for atomistic simulations.
    Behler J
    J Chem Phys; 2016 Nov; 145(17):170901. PubMed ID: 27825224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward Fast and Reliable Potential Energy Surfaces for Metallic Pt Clusters by Hierarchical Delta Neural Networks.
    Sun G; Sautet P
    J Chem Theory Comput; 2019 Oct; 15(10):5614-5627. PubMed ID: 31465216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and Accurate Uncertainty Estimation in Chemical Machine Learning.
    Musil F; Willatt MJ; Langovoy MA; Ceriotti M
    J Chem Theory Comput; 2019 Feb; 15(2):906-915. PubMed ID: 30605342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nearsighted force-training approach to systematically generate training data for the machine learning of large atomic structures.
    Zeng C; Chen X; Peterson AA
    J Chem Phys; 2022 Feb; 156(6):064104. PubMed ID: 35168344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning transferable atomic forces for large systems from underconverged molecular fragments.
    Herbold M; Behler J
    Phys Chem Chem Phys; 2023 May; 25(18):12979-12989. PubMed ID: 37165873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncertainty estimation for molecular dynamics and sampling.
    Imbalzano G; Zhuang Y; Kapil V; Rossi K; Engel EA; Grasselli F; Ceriotti M
    J Chem Phys; 2021 Feb; 154(7):074102. PubMed ID: 33607885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning Models Capture Plasmon Dynamics in Ag Nanoparticles.
    Habib A; Lubbers N; Tretiak S; Nebgen B
    J Phys Chem A; 2023 May; 127(17):3768-3778. PubMed ID: 37078657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Dimensional Atomistic Neural Network Potentials for Molecule-Surface Interactions: HCl Scattering from Au(111).
    Kolb B; Luo X; Zhou X; Jiang B; Guo H
    J Phys Chem Lett; 2017 Feb; 8(3):666-672. PubMed ID: 28102689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Atomic-Resolution Uncertainty Estimation for Neural Network Potentials Using a Replica Ensemble.
    Jeong W; Yoo D; Lee K; Jung J; Han S
    J Phys Chem Lett; 2020 Aug; 11(15):6090-6096. PubMed ID: 32598159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks.
    Schwalbe-Koda D; Tan AR; Gómez-Bombarelli R
    Nat Commun; 2021 Aug; 12(1):5104. PubMed ID: 34429418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerating atomistic simulations with piecewise machine-learned
    Zhang Y; Hu C; Jiang B
    Phys Chem Chem Phys; 2021 Jan; 23(3):1815-1821. PubMed ID: 33236743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iterative training set refinement enables reactive molecular dynamics
    Chen L; Sukuba I; Probst M; Kaiser A
    RSC Adv; 2020 Jan; 10(8):4293-4299. PubMed ID: 35495270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep ensembles vs committees for uncertainty estimation in neural-network force fields: Comparison and application to active learning.
    Carrete J; Montes-Campos H; Wanzenböck R; Heid E; Madsen GKH
    J Chem Phys; 2023 May; 158(20):. PubMed ID: 37212411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to train a neural network potential.
    Tokita AM; Behler J
    J Chem Phys; 2023 Sep; 159(12):. PubMed ID: 38127396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.