BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 28418071)

  • 1. Chronic exposure to graphene-based nanomaterials induces behavioral deficits and neural damage in Caenorhabditis elegans.
    Li P; Xu T; Wu S; Lei L; He D
    J Appl Toxicol; 2017 Oct; 37(10):1140-1150. PubMed ID: 28418071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral deficits and neural damage of Caenorhabditis elegans induced by three rare earth elements.
    Xu T; Zhang M; Hu J; Li Z; Wu T; Bao J; Wu S; Lei L; He D
    Chemosphere; 2017 Aug; 181():55-62. PubMed ID: 28426941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acrylamide induces locomotor defects and degeneration of dopamine neurons in Caenorhabditis elegans.
    Li J; Li D; Yang Y; Xu T; Li P; He D
    J Appl Toxicol; 2016 Jan; 36(1):60-7. PubMed ID: 25876170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of lanthanum nitrate on behavioral disorder, neuronal damage and gene expression in different developmental stages of Caenorhabditis elegans.
    Han GC; Jing HM; Zhang WJ; Zhang N; Li ZN; Zhang GY; Gao S; Ning JY; Li GJ
    Toxicology; 2022 Jan; 465():153012. PubMed ID: 34718030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene oxide-induced neurotoxicity on neurotransmitters, AFD neurons and locomotive behavior in Caenorhabditis elegans.
    Kim M; Eom HJ; Choi I; Hong J; Choi J
    Neurotoxicology; 2020 Mar; 77():30-39. PubMed ID: 31862286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systems toxicology approach reveals the Wnt-MAPK crosstalk pathway mediated reproductive failure in Caenorhabditis elegans exposed to graphene oxide (GO) but not to reduced graphene oxide (rGO).
    Chatterjee N; Kim Y; Yang J; Roca CP; Joo SW; Choi J
    Nanotoxicology; 2017 Feb; 11(1):76-86. PubMed ID: 27901397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term exposure to thiolated graphene oxide in the range of μg/L induces toxicity in nematode Caenorhabditis elegans.
    Ding X; Wang J; Rui Q; Wang D
    Sci Total Environ; 2018 Mar; 616-617():29-37. PubMed ID: 29107776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of toxicity studies on graphene-based nanomaterials in laboratory animals.
    Ema M; Gamo M; Honda K
    Regul Toxicol Pharmacol; 2017 Apr; 85():7-24. PubMed ID: 28161457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphite nanoplatelets and Caenorhabditis elegans: insights from an in vivo model.
    Zanni E; De Bellis G; Bracciale MP; Broggi A; Santarelli ML; Sarto MS; Palleschi C; Uccelletti D
    Nano Lett; 2012 Jun; 12(6):2740-4. PubMed ID: 22612766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental basis for intestinal barrier against the toxicity of graphene oxide.
    Ren M; Zhao L; Ding X; Krasteva N; Rui Q; Wang D
    Part Fibre Toxicol; 2018 Jun; 15(1):26. PubMed ID: 29929559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular localization and toxicity of graphene oxide and reduced graphene oxide nanoplatelets to mussel hemocytes in vitro.
    Katsumiti A; Tomovska R; Cajaraville MP
    Aquat Toxicol; 2017 Jul; 188():138-147. PubMed ID: 28521151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide identification and functional analysis of long noncoding RNAs involved in the response to graphene oxide.
    Wu Q; Zhou X; Han X; Zhuo Y; Zhu S; Zhao Y; Wang D
    Biomaterials; 2016 Sep; 102():277-91. PubMed ID: 27348851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of graphene oxide exposure on intestinal Wnt signaling in nematode Caenorhabditis elegans.
    Liu P; Shao H; Kong Y; Wang D
    J Environ Sci (China); 2020 Feb; 88():200-208. PubMed ID: 31862061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of interneurons required for the aversive response of Caenorhabditis elegans to graphene oxide.
    Xiao G; Chen H; Krasteva N; Liu Q; Wang D
    J Nanobiotechnology; 2018 Apr; 16(1):45. PubMed ID: 29703212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurotoxicological evaluation of microcystin-LR exposure at environmental relevant concentrations on nematode Caenorhabditis elegans.
    Ju J; Ruan Q; Li X; Liu R; Li Y; Pu Y; Yin L; Wang D
    Environ Sci Pollut Res Int; 2013 Mar; 20(3):1823-30. PubMed ID: 22956115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide.
    Wu Q; Zhao Y; Fang J; Wang D
    Nanoscale; 2014 Jun; 6(11):5894-906. PubMed ID: 24756229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular signals regulating translocation and toxicity of graphene oxide in the nematode Caenorhabditis elegans.
    Wu Q; Zhao Y; Li Y; Wang D
    Nanoscale; 2014 Oct; 6(19):11204-12. PubMed ID: 25124895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal ERK signaling in response to graphene oxide in nematode Caenorhabditis elegans.
    Qu M; Li Y; Wu Q; Xia Y; Wang D
    Nanotoxicology; 2017 May; 11(4):520-533. PubMed ID: 28368775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans.
    Wu Q; Yin L; Li X; Tang M; Zhang T; Wang D
    Nanoscale; 2013 Oct; 5(20):9934-43. PubMed ID: 23986404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Deep Learning Analysis Reveals Nitrogen-Doped Graphene Quantum Dots Damage Neurons of Nematode
    Xu H; Wang X; Zhang X; Cheng J; Zhang J; Chen M; Wu T
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.