BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 28418104)

  • 1. Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies.
    Steelman ZA; Eldridge WJ; Weintraub JB; Wax A
    J Biophotonics; 2017 Dec; 10(12):1714-1722. PubMed ID: 28418104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response to Comment on "Cell nuclei have lower refractive index and mass density than cytoplasm": A Comment on "How a phase image of a cell with nucleus refractive index smaller than that of the cytoplasm should look like?", e201800033.
    Müller P; Guck J
    J Biophotonics; 2018 Jun; 11(6):e201800095. PubMed ID: 29722165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response to Comment on "Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies": A Comment on "How a phase image of a cell with nucleus refractive index smaller than that of the cytoplasm should look like?", e201800033.
    Steelman ZA; Eldridge WJ; Wax A
    J Biophotonics; 2018 Jun; 11(6):e201800091. PubMed ID: 29722169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How a phase image of a cell with nucleus refractive index smaller than that of the cytoplasm should look like?: A Comment on two papers by Steelman et al. and Schürmann et al. Read the Responses to this Comment: e201800091 and e201800095.
    Yurkin MA
    J Biophotonics; 2018 Jun; 11(6):e201800033. PubMed ID: 29722164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell nuclei have lower refractive index and mass density than cytoplasm.
    Schürmann M; Scholze J; Müller P; Guck J; Chan CJ
    J Biophotonics; 2016 Oct; 9(10):1068-1076. PubMed ID: 27010098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicted light scattering from particles observed in human age-related nuclear cataracts using mie scattering theory.
    Costello MJ; Johnsen S; Gilliland KO; Freel CD; Fowler WC
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):303-12. PubMed ID: 17197547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilamellar spherical particles as potential sources of excessive light scattering in human age-related nuclear cataracts.
    Costello MJ; Johnsen S; Metlapally S; Gilliland KO; Frame L; Balasubramanian D
    Exp Eye Res; 2010 Dec; 91(6):881-9. PubMed ID: 20888812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refractive index variance of cells and tissues measured by quantitative phase imaging.
    Shan M; Kandel ME; Popescu G
    Opt Express; 2017 Jan; 25(2):1573-1581. PubMed ID: 28158039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical insight into light scattering by photoreceptor cell nuclei.
    Kreysing M; Boyde L; Guck J; Chalut KJ
    Opt Lett; 2010 Aug; 35(15):2639-41. PubMed ID: 20680084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of internal refractive index profile of stochastically inhomogeneous nuclear models via analysis of two-dimensional optical scattering patterns.
    Arifler D; Guillaud M
    J Biomed Opt; 2021 May; 26(5):. PubMed ID: 33973424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures.
    Xu M; Wu TT; Qu JY
    J Biomed Opt; 2008; 13(2):024015. PubMed ID: 18465978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes.
    Wilson JD; Cottrell WJ; Foster TH
    J Biomed Opt; 2007; 12(1):014010. PubMed ID: 17343485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution, spherical structure and predicted Mie scattering of multilamellar bodies in human age-related nuclear cataracts.
    Gilliland KO; Freel CD; Johnsen S; Craig Fowler W; Costello MJ
    Exp Eye Res; 2004 Oct; 79(4):563-76. PubMed ID: 15381040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the refractive index of lens fibre membranes during maturation--impact on lens transparency.
    Michael R; van Marle J; Vrensen GF; van den Berg TJ
    Exp Eye Res; 2003 Jul; 77(1):93-9. PubMed ID: 12823992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell refractive index: Models, insights, applications and future perspectives.
    Gul B; Ashraf S; Khan S; Nisar H; Ahmad I
    Photodiagnosis Photodyn Ther; 2021 Mar; 33():102096. PubMed ID: 33188939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is there a difference between T- and B-lymphocyte morphology?
    Strokotov DI; Yurkin MA; Gilev KV; van Bockstaele DR; Hoekstra AG; Rubtsov NB; Maltsev VP
    J Biomed Opt; 2009; 14(6):064036. PubMed ID: 20059274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light scattering from normal and cervical cancer cells.
    Lin X; Wan N; Weng L; Zhou Y
    Appl Opt; 2017 Apr; 56(12):3608-3614. PubMed ID: 28430229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental verification of T-matrix-based inverse light scattering analysis for assessing structure of spheroids as models of cell nuclei.
    Amoozegar C; Giacomelli MG; Keener JD; Chalut KJ; Wax A
    Appl Opt; 2009 Apr; 48(10):D20-5. PubMed ID: 19340110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New method for evaluation of in vivo scattering and refractive index properties obtained with optical coherence tomography.
    Knüttel A; Bonev S; Knaak W
    J Biomed Opt; 2004; 9(2):265-73. PubMed ID: 15065890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultraviolet refractometry using field-based light scattering spectroscopy.
    Fu D; Choi W; Sung Y; Oh S; Yaqoob Z; Park Y; Dasari RR; Feld MS
    Opt Express; 2009 Oct; 17(21):18878-86. PubMed ID: 20372622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.