These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 28418223)

  • 1. Hydronium Ion Batteries: A Sustainable Energy Storage Solution.
    Zhu YH; Yang X; Zhang XB
    Angew Chem Int Ed Engl; 2017 Jun; 56(23):6378-6380. PubMed ID: 28418223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydronium-Ion Batteries with Perylenetetracarboxylic Dianhydride Crystals as an Electrode.
    Wang X; Bommier C; Jian Z; Li Z; Chandrabose RS; Rodríguez-Pérez IA; Greaney PA; Ji X
    Angew Chem Int Ed Engl; 2017 Mar; 56(11):2909-2913. PubMed ID: 28181730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mg-Ion Battery Electrode: An Organic Solid's Herringbone Structure Squeezed upon Mg-Ion Insertion.
    Rodríguez-Pérez IA; Yuan Y; Bommier C; Wang X; Ma L; Leonard DP; Lerner MM; Carter RG; Wu T; Greaney PA; Lu J; Ji X
    J Am Chem Soc; 2017 Sep; 139(37):13031-13037. PubMed ID: 28823162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ni-Co-Mn complexed 3,4,9,10-perylenetetracarboxylic acid complexes as novel organic electrode materials for lithium-ion batteries.
    Yuan W; Xu M; Li L; Chen N; Zhang Q; Chen J
    Dalton Trans; 2024 Jan; 53(4):1833-1848. PubMed ID: 38175197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene composite 3,4,9,10-perylenetetracarboxylic sodium salts with a honeycomb structure as a high performance anode material for lithium ion batteries.
    Xu M; Zhao J; Chen J; Chen K; Zhang Q; Zhong S
    Nanoscale Adv; 2021 Jul; 3(15):4561-4571. PubMed ID: 36133480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rocking-Chair Ammonium-Ion Battery: A Highly Reversible Aqueous Energy Storage System.
    Wu X; Qi Y; Hong JJ; Li Z; Hernandez AS; Ji X
    Angew Chem Int Ed Engl; 2017 Oct; 56(42):13026-13030. PubMed ID: 28859240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the multivalent aluminium-ion redox mechanism in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA).
    Canever N; Nann T
    Phys Chem Chem Phys; 2022 Mar; 24(10):5886-5893. PubMed ID: 35195123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performant All-Organic Aqueous Sodium-Ion Batteries Enabled by PTCDA Electrodes and a Hybrid Na/Mg Electrolyte.
    Karlsmo M; Bouchal R; Johansson P
    Angew Chem Int Ed Engl; 2021 Nov; 60(46):24709-24715. PubMed ID: 34528364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interlayer Engineering of α-MoO
    Zhang H; Wu W; Liu Q; Yang F; Shi X; Liu X; Yu M; Lu X
    Angew Chem Int Ed Engl; 2021 Jan; 60(2):896-903. PubMed ID: 33000516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corrigendum: Hydronium-Ion Batteries with Perylenetetracarboxylic Dianhydride Crystals as an Electrode.
    Wang X; Bommier C; Jian Z; Li Z; Chandrabose RS; Rodríguez-Pérez IA; Greaney PA; Ji X
    Angew Chem Int Ed Engl; 2017 Oct; 56(41):12399. PubMed ID: 28961390
    [No Abstract]   [Full Text] [Related]  

  • 12. Hydronium Intercalation Enables High Rate in Hexagonal Molybdate Single Crystals.
    Guo H; Wu S; Chen W; Su Z; Wang Q; Sharma N; Rong C; Fleischmann S; Liu Z; Zhao C
    Adv Mater; 2024 Feb; 36(6):e2307118. PubMed ID: 38016087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible intercalation of methyl viologen as a dicationic charge carrier in aqueous batteries.
    Wei Z; Shin W; Jiang H; Wu X; Stickle WF; Chen G; Lu J; Alex Greaney P; Du F; Ji X
    Nat Commun; 2019 Jul; 10(1):3227. PubMed ID: 31324815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries.
    Jache B; Binder JO; Abe T; Adelhelm P
    Phys Chem Chem Phys; 2016 Jun; 18(21):14299-316. PubMed ID: 27165175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new sodiation-desodiation mechanism of the titania-based negative electrode for sodium-ion batteries.
    Ding C; Nohira T; Hagiwara R
    Phys Chem Chem Phys; 2016 Nov; 18(44):30770-30776. PubMed ID: 27796378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrodeposited Na
    Paulitsch B; Yun J; Bandarenka AS
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8107-8112. PubMed ID: 28206743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life.
    Dong X; Chen L; Liu J; Haller S; Wang Y; Xia Y
    Sci Adv; 2016 Jan; 2(1):e1501038. PubMed ID: 26844298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the Dual-Electrode Characteristics of Layered Na
    Palanisamy M; Kim HW; Heo S; Lee E; Kim Y
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10618-10625. PubMed ID: 28277643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What Do Laser-Induced Transient Techniques Reveal for Batteries? Na- and K-Intercalation from Aqueous Electrolytes as an Example.
    Scieszka D; Yun J; Bandarenka AS
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):20213-20222. PubMed ID: 28530796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.