These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 28418537)

  • 1. Assessment of decellularization of heart bioimplants using a Raman spectroscopy method.
    Timchenko EV; Timchenko PE; Lichtenberg A; Assmann A; Aubin H; Akhyari P; Volova LT; Pershutkina SV
    J Biomed Opt; 2017 Sep; 22(9):91511. PubMed ID: 28418537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of the in vivo cellular repopulation of decellularized cardiovascular tissues by a detergent-free, non-proteolytic, actin-disassembling regimen.
    Assmann A; Struß M; Schiffer F; Heidelberg F; Munakata H; Timchenko EV; Timchenko PE; Kaufmann T; Huynh K; Sugimura Y; Leidl Q; Pinto A; Stoldt VR; Lichtenberg A; Akhyari P
    J Tissue Eng Regen Med; 2017 Dec; 11(12):3530-3543. PubMed ID: 28078820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detergent-based decellularization strategy preserves macro- and microstructure of heart valves.
    Haupt J; Lutter G; Gorb SN; Simionescu DT; Frank D; Seiler J; Paur A; Haben I
    Interact Cardiovasc Thorac Surg; 2018 Feb; 26(2):230-236. PubMed ID: 29155942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porcine pulmonary valve decellularization with NaOH-based vs detergent process: preliminary in vitro and in vivo assessments.
    van Steenberghe M; Schubert T; Gerelli S; Bouzin C; Guiot Y; Xhema D; Bollen X; Abdelhamid K; Gianello P
    J Cardiothorac Surg; 2018 Apr; 13(1):34. PubMed ID: 29695259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of the Triton X-100-sodium deoxycholate method and detergent-enzymatic digestion method for decellularization of porcine aortic valves.
    Yu BT; Li WT; Song BQ; Wu YL
    Eur Rev Med Pharmacol Sci; 2013 Aug; 17(16):2179-84. PubMed ID: 23893184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Detergent-Free and Detergent-Based Methods for Decellularization of Murine Skin.
    Farrokhi A; Pakyari M; Nabai L; Pourghadiri A; Hartwell R; Jalili R; Ghahary A
    Tissue Eng Part A; 2018 Jun; 24(11-12):955-967. PubMed ID: 29303417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis.
    Seo Y; Jung Y; Kim SH
    Acta Biomater; 2018 Feb; 67():270-281. PubMed ID: 29223704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automation of Pressure Control Improves Whole Porcine Heart Decellularization.
    Momtahan N; Poornejad N; Struk JA; Castleton AA; Herrod BJ; Vance BR; Eatough JP; Roeder BL; Reynolds PR; Cook AD
    Tissue Eng Part C Methods; 2015 Nov; 21(11):1148-61. PubMed ID: 26077163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverted orientation improves decellularization of whole porcine hearts.
    Lee PF; Chau E; Cabello R; Yeh AT; Sampaio LC; Gobin AS; Taylor DA
    Acta Biomater; 2017 Feb; 49():181-191. PubMed ID: 27884776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative characterization of decellularized renal scaffolds for tissue engineering.
    Fischer I; Westphal M; Rossbach B; Bethke N; Hariharan K; Ullah I; Reinke P; Kurtz A; Stachelscheid H
    Biomed Mater; 2017 Jul; 12(4):045005. PubMed ID: 28396578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preservation of aortic root architecture and properties using a detergent-enzymatic perfusion protocol.
    Friedrich LH; Jungebluth P; Sjöqvist S; Lundin V; Haag JC; Lemon G; Gustafsson Y; Ajalloueian F; Sotnichenko A; Kielstein H; Burguillos MA; Joseph B; Teixeira AI; Lim ML; Macchiarini P
    Biomaterials; 2014 Feb; 35(6):1907-13. PubMed ID: 24321707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient decellularization of whole porcine kidneys improves reseeded cell behavior.
    Poornejad N; Momtahan N; Salehi AS; Scott DR; Fronk CA; Roeder BL; Reynolds PR; Bundy BC; Cook AD
    Biomed Mater; 2016 Mar; 11(2):025003. PubMed ID: 26963774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of detergent-based decellularization protocols for the removal of antigenic cellular components in porcine aortic valve.
    Liu X; Li N; Gong D; Xia C; Xu Z
    Xenotransplantation; 2018 Mar; 25(2):e12380. PubMed ID: 29446183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouse Skeletal Muscle Decellularization.
    Piccoli M; Trevisan C; Maghin E; Franzin C; Pozzobon M
    Methods Mol Biol; 2018; 1577():87-93. PubMed ID: 28451996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Detergent-Based Decellularization Methods on Porcine Tissues for Heart Valve Engineering.
    Roosens A; Somers P; De Somer F; Carriel V; Van Nooten G; Cornelissen R
    Ann Biomed Eng; 2016 Sep; 44(9):2827-39. PubMed ID: 26842626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular Matrix from Whole Porcine Heart Decellularization for Cardiac Tissue Engineering.
    Hodgson MJ; Knutson CC; Momtahan N; Cook AD
    Methods Mol Biol; 2018; 1577():95-102. PubMed ID: 28456953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue engineering of heart valves: biomechanical and morphological properties of decellularized heart valves.
    Tudorache I; Cebotari S; Sturz G; Kirsch L; Hurschler C; Hilfiker A; Haverich A; Lichtenberg A
    J Heart Valve Dis; 2007 Sep; 16(5):567-73; discussion 574. PubMed ID: 17944130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Method for perfusion decellularization of porcine whole liver and kidney for use as a scaffold for clinical-scale bioengineering engrafts.
    Wang Y; Bao J; Wu Q; Zhou Y; Li Y; Wu X; Shi Y; Li L; Bu H
    Xenotransplantation; 2015; 22(1):48-61. PubMed ID: 25291435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Qualitative and Quantitative Evaluation of a Novel Detergent-Based Method for Decellularization of Peripheral Nerves.
    Philips C; Campos F; Roosens A; Sánchez-Quevedo MDC; Declercq H; Carriel V
    Ann Biomed Eng; 2018 Nov; 46(11):1921-1937. PubMed ID: 29987538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing biochemical and morphological variations of clinically relevant anatomical locations of oral tissue in vivo with hybrid Raman spectroscopy and optical coherence tomography technique.
    Wang J; Zheng W; Lin K; Huang Z
    J Biophotonics; 2018 Mar; 11(3):. PubMed ID: 28985038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.