These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 28418656)

  • 1. Informing the Selection of Screening Hit Series with in Silico Absorption, Distribution, Metabolism, Excretion, and Toxicity Profiles.
    Sanders JM; Beshore DC; Culberson JC; Fells JI; Imbriglio JE; Gunaydin H; Haidle AM; Labroli M; Mattioni BE; Sciammetta N; Shipe WD; Sheridan RP; Suen LM; Verras A; Walji A; Joshi EM; Bueters T
    J Med Chem; 2017 Aug; 60(16):6771-6780. PubMed ID: 28418656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward in silico structure-based ADMET prediction in drug discovery.
    Moroy G; Martiny VY; Vayer P; Villoutreix BO; Miteva MA
    Drug Discov Today; 2012 Jan; 17(1-2):44-55. PubMed ID: 22056716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive QSAR modeling for the successful predictions of the ADMET properties of candidate drug molecules.
    Khan MT; Sylte I
    Curr Drug Discov Technol; 2007 Oct; 4(3):141-9. PubMed ID: 17985997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling ADMET.
    Ghosh J; Lawless MS; Waldman M; Gombar V; Fraczkiewicz R
    Methods Mol Biol; 2016; 1425():63-83. PubMed ID: 27311462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De-risking drug discovery with ADDME -- avoiding drug development mistakes early.
    Tsaioun K; Jacewicz M
    Altern Lab Anim; 2009 Sep; 37 Suppl 1():47-55. PubMed ID: 19807206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent uses of topological indices in the development of in silico ADMET models.
    Votano JR
    Curr Opin Drug Discov Devel; 2005 Jan; 8(1):32-7. PubMed ID: 15679169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput and in silico techniques in drug metabolism and pharmacokinetics.
    van de Waterbeemd H
    Curr Opin Drug Discov Devel; 2002 Jan; 5(1):33-43. PubMed ID: 11865671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico ADME-Tox modeling: progress and prospects.
    Alqahtani S
    Expert Opin Drug Metab Toxicol; 2017 Nov; 13(11):1147-1158. PubMed ID: 28988506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modern drug discovery technologies: opportunities and challenges in lead discovery.
    Guido RV; Oliva G; Andricopulo AD
    Comb Chem High Throughput Screen; 2011 Dec; 14(10):830-9. PubMed ID: 21843147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ADMET in silico modelling: towards prediction paradise?
    van de Waterbeemd H; Gifford E
    Nat Rev Drug Discov; 2003 Mar; 2(3):192-204. PubMed ID: 12612645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico prediction of cytochrome P450-mediated drug metabolism.
    Zhang T; Chen Q; Li L; Liu LA; Wei DQ
    Comb Chem High Throughput Screen; 2011 Jun; 14(5):388-95. PubMed ID: 21470181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving compound quality through in vitro and in silico physicochemical profiling.
    van de Waterbeemd H
    Chem Biodivers; 2009 Nov; 6(11):1760-6. PubMed ID: 19937820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early phase drug discovery: cheminformatics and computational techniques in identifying lead series.
    Duffy BC; Zhu L; Decornez H; Kitchen DB
    Bioorg Med Chem; 2012 Sep; 20(18):5324-42. PubMed ID: 22938785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relating molecular properties and in vitro assay results to in vivo drug disposition and toxicity outcomes.
    Sutherland JJ; Raymond JW; Stevens JL; Baker TK; Watson DE
    J Med Chem; 2012 Jul; 55(14):6455-66. PubMed ID: 22716080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The application of in silico drug-likeness predictions in pharmaceutical research.
    Tian S; Wang J; Li Y; Li D; Xu L; Hou T
    Adv Drug Deliv Rev; 2015 Jun; 86():2-10. PubMed ID: 25666163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of in silico and in vitro tools for scaffold optimization during drug discovery: predicting P-glycoprotein efflux.
    Desai PV; Sawada GA; Watson IA; Raub TJ
    Mol Pharm; 2013 Apr; 10(4):1249-61. PubMed ID: 23363443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodiversity of small molecules--a new perspective in screening set selection.
    Petrone PM; Wassermann AM; Lounkine E; Kutchukian P; Simms B; Jenkins J; Selzer P; Glick M
    Drug Discov Today; 2013 Jul; 18(13-14):674-80. PubMed ID: 23454345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biophysics: for HTS hit validation, chemical lead optimization, and beyond.
    Genick CC; Wright SK
    Expert Opin Drug Discov; 2017 Sep; 12(9):897-907. PubMed ID: 28658992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.
    Martin E; Mukherjee P; Sullivan D; Jansen J
    J Chem Inf Model; 2011 Aug; 51(8):1942-56. PubMed ID: 21667971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico pharmacology for a multidisciplinary drug discovery process.
    Ortega SS; Cara LC; Salvador MK
    Drug Metabol Drug Interact; 2012; 27(4):199-207. PubMed ID: 23152402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.