BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28418661)

  • 41. Protein Structural Memory Influences Ligand Binding Mode(s) and Unbinding Rates.
    Xu M; Caflisch A; Hamm P
    J Chem Theory Comput; 2016 Mar; 12(3):1393-9. PubMed ID: 26799675
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Estimating kinetic rates from accelerated molecular dynamics simulations: alanine dipeptide in explicit solvent as a case study.
    de Oliveira CA; Hamelberg D; McCammon JA
    J Chem Phys; 2007 Nov; 127(17):175105. PubMed ID: 17994855
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of human galectin-1 binding to saccharide ligands on dimer dissociation kinetics and structure.
    Romero JM; Trujillo M; Estrin DA; Rabinovich GA; Di Lella S
    Glycobiology; 2016 Dec; 26(12):1317-1327. PubMed ID: 27222530
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Extraction of Protein Conformational Modes from Distance Distributions Using Structurally Imputed Bayesian Data Augmentation.
    Sun X; Morrell TE; Yang H
    J Phys Chem B; 2016 Oct; 120(40):10469-10482. PubMed ID: 27642672
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simple, yet powerful methodologies for conformational sampling of proteins.
    Harada R; Takano Y; Baba T; Shigeta Y
    Phys Chem Chem Phys; 2015 Mar; 17(9):6155-73. PubMed ID: 25659594
    [TBL] [Abstract][Full Text] [Related]  

  • 46. How many atoms are required to characterize accurately trajectory fluctuations of a protein?
    Cukier RI
    J Chem Phys; 2010 Jun; 132(24):245101. PubMed ID: 20590215
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nonlinear discovery of slow molecular modes using state-free reversible VAMPnets.
    Chen W; Sidky H; Ferguson AL
    J Chem Phys; 2019 Jun; 150(21):214114. PubMed ID: 31176319
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism of the Association Pathways for a Pair of Fast and Slow Binding Ligands of HIV-1 Protease.
    Huang YM; Raymundo MA; Chen W; Chang CA
    Biochemistry; 2017 Mar; 56(9):1311-1323. PubMed ID: 28060481
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Only subtle protein conformational adaptations are required for ligand binding to thyroid hormone receptors: simulations using a novel multipoint steered molecular dynamics approach.
    Martínez L; Polikarpov I; Skaf MS
    J Phys Chem B; 2008 Aug; 112(34):10741-51. PubMed ID: 18681473
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular dynamics of large-ring cyclodextrins: principal component analysis of the conformational interconversions.
    Gotsev MG; Ivanov PM
    J Phys Chem B; 2009 Apr; 113(17):5752-9. PubMed ID: 19344106
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Activation of large ions in FT-ICR mass spectrometry.
    Laskin J; Futrell JH
    Mass Spectrom Rev; 2005; 24(2):135-67. PubMed ID: 15389858
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Case study on temperature-accelerated molecular dynamics simulation of ligand dissociation: inducer dissociation from the Lac repressor protein.
    Hu Y; Liu H
    J Phys Chem A; 2014 Oct; 118(39):9272-9. PubMed ID: 24941022
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications.
    Hu J; Liu S
    Acc Chem Res; 2014 Jul; 47(7):2084-95. PubMed ID: 24742049
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pathways of ligand clearance in acetylcholinesterase by multiple copy sampling.
    Van Belle D; De Maria L; Iurcu G; Wodak SJ
    J Mol Biol; 2000 May; 298(4):705-26. PubMed ID: 10788331
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinetic mechanism of indole-3-glycerol phosphate synthase.
    Schlee S; Dietrich S; Kurćon T; Delaney P; Goodey NM; Sterner R
    Biochemistry; 2013 Jan; 52(1):132-42. PubMed ID: 23214473
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exploring free energy landscapes of large conformational changes: molecular dynamics with excited normal modes.
    Costa MG; Batista PR; Bisch PM; Perahia D
    J Chem Theory Comput; 2015 Jun; 11(6):2755-67. PubMed ID: 26575568
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Flap Dynamics in Aspartic Proteases: A Computational Perspective.
    Mahanti M; Bhakat S; Nilsson UJ; Söderhjelm P
    Chem Biol Drug Des; 2016 Aug; 88(2):159-77. PubMed ID: 26872937
    [TBL] [Abstract][Full Text] [Related]  

  • 59. FAST Conformational Searches by Balancing Exploration/Exploitation Trade-Offs.
    Zimmerman MI; Bowman GR
    J Chem Theory Comput; 2015 Dec; 11(12):5747-57. PubMed ID: 26588361
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of substrate dynamics in protein prenylation reactions.
    Chakravorty DK; Merz KM
    Acc Chem Res; 2015 Feb; 48(2):439-48. PubMed ID: 25539152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.