These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 28419173)
1. Sponge symbioses between Xestospongia deweerdtae and Plakortis spp. are not motivated by shared chemical defense against predators. Marty MJ; Vicente J; Oyler BL; Place A; Hill RT PLoS One; 2017; 12(4):e0174816. PubMed ID: 28419173 [TBL] [Abstract][Full Text] [Related]
2. Sponge epizoism in the Caribbean and the discovery of new Plakortis and Haliclona species, and polymorphism of Xestospongia deweerdtae (Porifera). Vicente J; Zea S; Hill RT Zootaxa; 2016 Oct; 4178(2):209-233. PubMed ID: 27811721 [TBL] [Abstract][Full Text] [Related]
3. Peroxide Natural Products from Plakortis zyggompha and the Sponge Association Plakortis halichondrioides-Xestospongia deweerdtae: Antifungal Activity against Cryptococcus gattii. Jamison MT; Dalisay DS; Molinski TF J Nat Prod; 2016 Mar; 79(3):555-63. PubMed ID: 26859086 [TBL] [Abstract][Full Text] [Related]
4. Plakortinic Acids A and B: Cytotoxic Cycloperoxides with a Bicyclo[4.2.0]octene Unit from Sponges of the Genera Plakortis and Xestospongia. Jiménez-Romero C; Rodríguez AD; Nam S Org Lett; 2017 Mar; 19(6):1486-1489. PubMed ID: 28272898 [TBL] [Abstract][Full Text] [Related]
5. Exploring the Sponge Consortium Plakortis symbiotica-Xestospongia deweerdtae as a Potential Source of Antimicrobial Compounds and Probing the Pharmacophore for Antituberculosis Activity of Smenothiazole A by Diverted Total Synthesis. Jiménez-Romero C; Rode JE; Pérez YM; Franzblau SG; Rodríguez AD J Nat Prod; 2017 Aug; 80(8):2295-2303. PubMed ID: 28742349 [TBL] [Abstract][Full Text] [Related]
6. Plakortinic acids C and D: a pair of peroxide-polyketides possessing a rare 7,8-dioxatricyclo[4.2.2.0 Jiménez-Romero C; Amador LA; Rodríguez AD Tetrahedron Lett; 2021 Mar; 66():. PubMed ID: 33678913 [TBL] [Abstract][Full Text] [Related]
7. Liposomal circular dichroism. Assignment of remote stereocenters in plakinic acids K and L from a Plakortis-Xestospongia sponge association. Dalisay DS; Quach T; Molinski TF Org Lett; 2010 Apr; 12(7):1524-7. PubMed ID: 20205426 [TBL] [Abstract][Full Text] [Related]
8. Does the odor from sponges of the genus Ircinia protect them from fish predators? Pawlik JR; McFall G; Zea S J Chem Ecol; 2002 Jun; 28(6):1103-15. PubMed ID: 12184391 [TBL] [Abstract][Full Text] [Related]
9. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Loh TL; Pawlik JR Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4151-6. PubMed ID: 24567392 [TBL] [Abstract][Full Text] [Related]
10. Biogeography of sponge chemical ecology: comparisons of tropical and temperate defenses. Becerro MA; Thacker RW; Turon X; Uriz MJ; Paul VJ Oecologia; 2003 Mar; 135(1):91-101. PubMed ID: 12647108 [TBL] [Abstract][Full Text] [Related]
11. Latitudinal variation in spongivorous fishes and the effectiveness of sponge chemical defenses. Ruzicka R; Gleason DF Oecologia; 2008 Jan; 154(4):785-94. PubMed ID: 17960425 [TBL] [Abstract][Full Text] [Related]
12. Variations in Microbial Diversity and Metabolite Profiles of the Tropical Marine Sponge Xestospongia muta with Season and Depth. Villegas-Plazas M; Wos-Oxley ML; Sanchez JA; Pieper DH; Thomas OP; Junca H Microb Ecol; 2019 Jul; 78(1):243-256. PubMed ID: 30413836 [TBL] [Abstract][Full Text] [Related]
13. Amaroxocanes A and B: sulfated dimeric sterols defend the Caribbean coral reef sponge Phorbas amaranthus from fish predators. Morinaka BI; Pawlik JR; Molinski TF J Nat Prod; 2009 Feb; 72(2):259-64. PubMed ID: 19143510 [TBL] [Abstract][Full Text] [Related]
14. Sponge chemical defenses are a possible mechanism for increasing sponge abundance on reefs in Zanzibar. Helber SB; Hoeijmakers DJJ; Muhando CA; Rohde S; Schupp PJ PLoS One; 2018; 13(6):e0197617. PubMed ID: 29924803 [TBL] [Abstract][Full Text] [Related]
15. The selective cleaning behaviour of juvenile blue-headed wrasse (Thalassoma bifasciatum) in the Caribbean. Dunkley K; Cable J; Perkins SE Behav Processes; 2018 Feb; 147():5-12. PubMed ID: 29247694 [TBL] [Abstract][Full Text] [Related]
16. Bottom-up and top-down controls on coral reef sponges: disentangling within-habitat and between-habitat processes. Wulff J Ecology; 2017 Apr; 98(4):1130-1139. PubMed ID: 28130801 [TBL] [Abstract][Full Text] [Related]
17. The pathology of sponge orange band disease affecting the Caribbean barrel sponge Xestospongia muta. Angermeier H; Kamke J; Abdelmohsen UR; Krohne G; Pawlik JR; Lindquist NL; Hentschel U FEMS Microbiol Ecol; 2011 Feb; 75(2):218-30. PubMed ID: 21118276 [TBL] [Abstract][Full Text] [Related]
18. Seaweed-herbivore-predator interactions: host-plant specialization reduces predation on small herbivores. Hay ME; Pawlik JR; Duffy JE; Fenical W Oecologia; 1989 Nov; 81(3):418-427. PubMed ID: 28311198 [TBL] [Abstract][Full Text] [Related]
19. Effects of sponge-to-sponge contact on the microbiomes of three spatially competing Caribbean coral reef species. Gantt SE; Erwin PM Microbiologyopen; 2023 Jun; 12(3):e1354. PubMed ID: 37379422 [TBL] [Abstract][Full Text] [Related]
20. Chemical constituents of the deep reef caribbean sponges Plakortis angulospiculatus and Plakortis halichondrioides and their anti-inflammatory activities. Ankisetty S; Gochfeld DJ; Diaz MC; Khan SI; Slattery M J Nat Prod; 2010 Sep; 73(9):1494-8. PubMed ID: 20738102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]