These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 28419207)
1. CKII-SIRT1-SM22α loop evokes a self-limited inflammatory response in vascular smooth muscle cells. Shu YN; Dong LH; Li H; Pei QQ; Miao SB; Zhang F; Zhang DD; Chen R; Yin YJ; Lin YL; Xue ZY; Lv P; Xie XL; Zhao LL; Nie X; Chen P; Han M Cardiovasc Res; 2017 Aug; 113(10):1198-1207. PubMed ID: 28419207 [TBL] [Abstract][Full Text] [Related]
2. SM22α inhibits vascular inflammation via stabilization of IκBα in vascular smooth muscle cells. Shu YN; Zhang F; Bi W; Dong LH; Zhang DD; Chen R; Lv P; Xie XL; Lin YL; Xue ZY; Li H; Miao SB; Zhao LL; Wang H; Han M J Mol Cell Cardiol; 2015 Jul; 84():191-9. PubMed ID: 25937534 [TBL] [Abstract][Full Text] [Related]
3. TRAF6-Mediated SM22α K21 Ubiquitination Promotes G6PD Activation and NADPH Production, Contributing to GSH Homeostasis and VSMC Survival In Vitro and In Vivo. Dong LH; Li L; Song Y; Duan ZL; Sun SG; Lin YL; Miao SB; Yin YJ; Shu YN; Li H; Chen P; Zhao LL; Han M Circ Res; 2015 Sep; 117(8):684-94. PubMed ID: 26291555 [TBL] [Abstract][Full Text] [Related]
4. Phosphorylation of smooth muscle 22α facilitates angiotensin II-induced ROS production via activation of the PKCδ-P47phox axis through release of PKCδ and actin dynamics and is associated with hypertrophy and hyperplasia of vascular smooth muscle cells in vitro and in vivo. Lv P; Miao SB; Shu YN; Dong LH; Liu G; Xie XL; Gao M; Wang YC; Yin YJ; Wang XJ; Han M Circ Res; 2012 Aug; 111(6):697-707. PubMed ID: 22798525 [TBL] [Abstract][Full Text] [Related]
5. Exendin-4 promotes the vascular smooth muscle cell re-differentiation through AMPK/SIRT1/FOXO3a signaling pathways. Liu Z; Zhang M; Zhou T; Shen Q; Qin X Atherosclerosis; 2018 Sep; 276():58-66. PubMed ID: 30036742 [TBL] [Abstract][Full Text] [Related]
6. Inactivation of the tumour suppressor, PTEN, in smooth muscle promotes a pro-inflammatory phenotype and enhances neointima formation. Furgeson SB; Simpson PA; Park I; Vanputten V; Horita H; Kontos CD; Nemenoff RA; Weiser-Evans MC Cardiovasc Res; 2010 May; 86(2):274-82. PubMed ID: 20051384 [TBL] [Abstract][Full Text] [Related]
7. Blockade of the Ras-extracellular signal-regulated kinase 1/2 pathway is involved in smooth muscle 22 alpha-mediated suppression of vascular smooth muscle cell proliferation and neointima hyperplasia. Dong LH; Wen JK; Liu G; McNutt MA; Miao SB; Gao R; Zheng B; Zhang H; Han M Arterioscler Thromb Vasc Biol; 2010 Apr; 30(4):683-91. PubMed ID: 20139360 [TBL] [Abstract][Full Text] [Related]
8. O-Linked β-N-Acetylglucosamine Modification of A20 Enhances the Inhibition of NF-κB (Nuclear Factor-κB) Activation and Elicits Vascular Protection After Acute Endoluminal Arterial Injury. Yao D; Xu L; Xu O; Li R; Chen M; Shen H; Zhu H; Zhang F; Yao D; Chen YF; Oparil S; Zhang Z; Gong K Arterioscler Thromb Vasc Biol; 2018 Jun; 38(6):1309-1320. PubMed ID: 29622561 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome profiling reveals that the SM22α-regulated molecular pathways contribute to vascular pathology. Chen R; Zhang F; Song L; Shu Y; Lin Y; Dong L; Nie X; Zhang D; Chen P; Han M J Mol Cell Cardiol; 2014 Jul; 72():263-72. PubMed ID: 24735829 [TBL] [Abstract][Full Text] [Related]
10. Enhancer of zeste homolog-2 (EZH2) methyltransferase regulates transgelin/smooth muscle-22α expression in endothelial cells in response to interleukin-1β and transforming growth factor-β2. Maleszewska M; Gjaltema RA; Krenning G; Harmsen MC Cell Signal; 2015 Aug; 27(8):1589-96. PubMed ID: 25917318 [TBL] [Abstract][Full Text] [Related]
11. Mineralocorticoid Receptor Deficiency in Macrophages Inhibits Neointimal Hyperplasia and Suppresses Macrophage Inflammation Through SGK1-AP1/NF-κB Pathways. Sun JY; Li C; Shen ZX; Zhang WC; Ai TJ; Du LJ; Zhang YY; Yao GF; Liu Y; Sun S; Naray-Fejes-Toth A; Fejes-Toth G; Peng Y; Chen M; Liu X; Tao J; Zhou B; Yu Y; Guo F; Du J; Duan SZ Arterioscler Thromb Vasc Biol; 2016 May; 36(5):874-85. PubMed ID: 26966277 [TBL] [Abstract][Full Text] [Related]
12. Histone demethylase KDM3a, a novel regulator of vascular smooth muscle cells, controls vascular neointimal hyperplasia in diabetic rats. Chen J; Zhang J; Yang J; Xu L; Hu Q; Xu C; Yang S; Jiang H Atherosclerosis; 2017 Feb; 257():152-163. PubMed ID: 28135625 [TBL] [Abstract][Full Text] [Related]
13. Insulin-independent GLUT4 translocation in proliferative vascular smooth muscle cells involves SM22α. Zhao LL; Zhang F; Chen P; Xie XL; Dou YQ; Lin YL; Nie L; Lv P; Zhang DD; Li XK; Miao SB; Yin YJ; Dong LH; Song Y; Shu YN; Han M J Mol Med (Berl); 2017 Feb; 95(2):181-192. PubMed ID: 27631639 [TBL] [Abstract][Full Text] [Related]
14. Disruption of SM22 promotes inflammation after artery injury via nuclear factor kappaB activation. Shen J; Yang M; Ju D; Jiang H; Zheng JP; Xu Z; Li L Circ Res; 2010 Apr; 106(8):1351-62. PubMed ID: 20224039 [TBL] [Abstract][Full Text] [Related]
16. circ-Sirt1 controls NF-κB activation via sequence-specific interaction and enhancement of SIRT1 expression by binding to miR-132/212 in vascular smooth muscle cells. Kong P; Yu Y; Wang L; Dou YQ; Zhang XH; Cui Y; Wang HY; Yong YT; Liu YB; Hu HJ; Cui W; Sun SG; Li BH; Zhang F; Han M Nucleic Acids Res; 2019 Apr; 47(7):3580-3593. PubMed ID: 30820544 [TBL] [Abstract][Full Text] [Related]
17. Thymine DNA glycosylase is a key regulator of CaMKIIγ expression and vascular smooth muscle phenotype. Liu Y; Sun LY; Singer DV; Ginnan R; Zhao W; Jourd'heuil FL; Jourd'heuil D; Long X; Singer HA Am J Physiol Heart Circ Physiol; 2019 Nov; 317(5):H969-H980. PubMed ID: 31518169 [TBL] [Abstract][Full Text] [Related]
18. Arterial injury promotes medial chondrogenesis in Sm22 knockout mice. Shen J; Yang M; Jiang H; Ju D; Zheng JP; Xu Z; Liao TD; Li L Cardiovasc Res; 2011 Apr; 90(1):28-37. PubMed ID: 21183509 [TBL] [Abstract][Full Text] [Related]
19. Smooth muscle 22α facilitates angiotensin II-induced signaling and vascular contraction. Xie XL; Nie X; Wu J; Zhang F; Zhao LL; Lin YL; Yin YJ; Liu H; Shu YN; Miao SB; Li H; Chen P; Han M J Mol Med (Berl); 2015 May; 93(5):547-58. PubMed ID: 25515236 [TBL] [Abstract][Full Text] [Related]
20. New mechanism of rosiglitazone to reduce neointimal hyperplasia: activation of glycogen synthase kinase-3beta followed by inhibition of MMP-9. Lee CS; Kwon YW; Yang HM; Kim SH; Kim TY; Hur J; Park KW; Cho HJ; Kang HJ; Park YB; Kim HS Arterioscler Thromb Vasc Biol; 2009 Apr; 29(4):472-9. PubMed ID: 19201691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]